2019학년도 수학 가형 30번 문제풀이와 고난이도 문제를 풀 때 TIP
안녕하세요 수학을 전공하고 있는 지나가던 복학생입니다 ㅎ
인터넷 실검에 모의고사가 올라온 걸 보고, 갑자기 향수가 돋아 오랜만에 풀어보고 과외와 학원알바 경험을 살려 정리를 해 보았습니다.
나름 이해하기 쉽게 정리해보려고 노력했는데, 다시 읽어보니 은근히 들쑥날쑥하기도 하고 저보다 더 뛰어나신 선생님들이 훨씬 깔끔하게 풀어주신 것 같지만 그래도 혹시 여전히 문제 풀이에 어려움을 느끼고 있으신 분들께 도움이 되지 않을까 싶어 올리게 되었어요.
PC로 보시는 분들은 잘 보이지 않으실테니, '다른이름으로 저장'하시고 봐주시면 되겠습니다!
이해가 안 되는 부분이 있거나 의아하다 싶은 부분이 있으시면 댓글 달아주세요 성실히 답변해드리겠습니다.
그리고 음 개인적으로 저의 경험을 살려 문제 풀이에 대한 팁을 몇개 적어보려 하는데요.
(1). 문제에서 다항함수의 최고차항을 주어주면 거의 대부분의 문제가 다항함수를 직접 찾아내야 하는 문제입니다.
아시다시피 일반적인 n차 다항식은 계수가 (n+1)개 나오는데, 최고차항의 계수가 주어지면서 찾아내야 하는 계수의 개수가 1개 줄어들거든요. 거기에 그래프의 개형(아래로 볼록인지 위로 볼록인지 등)도 어느정도 파악할 수 있기 떄문에 풀이의 방향을 좀 더 확실하게 잡아줄 수 있습니다. 고작 1개 줄어든다 생각하실 수 있겠지만 증가함수인지 감소함수인지 모르는 삼차함수의 계수를 구하기 위해 4개의 식을 찾아내고 연립하는 것과 개형을 알고 있는 삼차함수의 나머지 계수들을 구하기 위해 3개의 식을 찾아내고 연립하는 것의 차이는 아주 큽니다.
(2). 그런데 사차함수 같은 경우엔 최고차항의 계수가 주어져도 모르는 계수가 아직 4개나 남아있고, 이를 알아내기 위해선 적어도 식 4개를 문제에서 찾아내야 하는데, 함수를 일반형으로 전개하고 주어진 조건을 이용하여 식을 4개씩이나 찾아내는 것은 무척이나 어려울 뿐더러 이를 연립하여 계수의 값들을 구해내는 것이 아주아주 복잡합니다. 그래서 주어진 조건을 이용하여 사차함수의 그래프 개형과 특징들을 먼저 파악하고, 이를 통해 식을 세운 뒤 문제를 풀어야 하는 경우가 많습니다. "실근의 개수", "접선의 개수", "x=k에서 극대/극소를 가짐" 등의 정보가 조건에 제시되어 있다면 거의 100% 그래프의 개형을 먼저 파악한 뒤 문제를 풀어야 하는 경우라고 보시면 됩니다.
(3). 문제를 끝까지 읽지도 않고 주어진 정보들을 바로 수식화하는 습관이 있으시다면 빨리 버리시는 것이 좋습니다. 요즘 수능이 시간싸움인 만큼 마음이 급한 것은 알겠지만, 고난이도 문제일수록 문제를 차근차근 읽고 그 문제를 어떻게 풀어나갈지 방향을 잡은 뒤 문제를 푸는 것이 오히려 시간 단축에 도움이 됩니다. 문제에 제시된 함수가 어떤 녀석인지, 문제에 제시된 조건들이 어떤 의미를 갖는지 등을 꼼꼼하게 살펴보아야 하고, 원하는 정보를 얻기 위해서 조건들을 어떻게 요리할지 구상해보는 과정이 반드시 필요합니다. 제시된 조건이 바로 수식으로 연결되어 중요한 값을 도출해낼 수 있는 조건이 있는 반면, 문제를 풀면서 생각하지 않아도 되는 경우를 배제시켜주는 조건이 있습니다. 이를 잘 구분하여 문제를 풀며 적재적소에 조건들을 사용하고, 정보를 완전히 뽑아낸 조건들은 깔끔히 놓아주는 센스도 필요합니다.
문제에 제시된 조건들을 예쁘게 가공하여 '정보 퍼즐조각'으로 만들고, 이를 다시 이쁘게 짜맞추어 우리가 알고싶었던 결과로 도출해내는 것이 거의 대부분의 수학문제 해결의 레파토리인 것 같습니다. 하지만 조각 하나가 없으면 완성할 수 없는 그림퍼즐과 같이 문제에 제시된 조건이나 정보를 보지 못하고 흘려버리면 절대 문제를 완벽하게 풀 수 없습니다. 또한 무작정 조각들을 맞추려 억지로 이것저것 끼워맞추는 것보단, 시작하기 전에 전체적인 큰 그림을 보고, 어떤 퍼즐들을 먼저 찾아낼지, 그리고 어떤 순서로 조립할 지 생각해 본 뒤 문제를 풀어나가는 것이 성공적인 문제해결을 위해 고려해야 할 필수적인 부분이라고 생각합니다.
글솜씨가 부족하여 조금 중구난방한 글이 된 것 같은데, 그래도 이 글이 조금이라도 여러분이 수학문제를 풀 때 도움이 됐으면 좋겠네요! 그럼 이만 줄이겠습니다. 혹시 다른 의견이나 지적하실 것이 있다면 그것도 댓글로 남겨주세요!
감사합니다~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능날 고정 백분위 96 시켜주면 함?
-
지금은 서울시립대 하나지만....
-
감기걸림
-
사회지문:브레턴 과학기술:게딱지 인문지문:에이어 고전:유씨삼대 현대시:잊잊잊...
-
수능 센빠이들 오늘의 운세 말대로 조언좀 부탁합니더
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 1
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
생지 하는 중인디 사탐런 해야하나 고민중 지금까지 해온게 너무 아깝긴 하지만…...
-
이거 사설틱한거 같은데 평가원에서 나오면 틀렸다고 판정해도 되죠? 지문에서도 장원...
-
나오면 이해 1도 안 되고 뭐 받음각이 어쩌고 제자리에서 회전 이런 거 뇌가...
-
수능날은 1
추워야 제맛이라고 생각해요...
-
내일의 운세 2
클났다
-
10초짜리 다큐 한 편 뚝딱
-
코로나 전이라 담임쌤도 오고 후배들도 오고 부모님도 오고
-
다음주에 논술인게 안믿김;;
-
문학 8틀해서 79 나옴 흑흑 과학 예술 경제 나왔는데 과학도 좋아하는 화학지문...
-
사주믿는사람? 3
운세같은건 크게 안믿는데 사주오행은 조금 참고하는 편 오늘 물어봤는데 푸른색이 좋다...
-
22.23 수능 0
사문.정법.경제 항상 2.3등급. -> 27수능 대비로 쌍지로 트는거 ㄱㅊ? 목표는...
-
감기걸렸는데 2
수능 D-9에서 감기가 심하게 걸러벼렸는데 약먹고쉬는게나을까요 아니면 그래도 좀...
-
ㅈㄴ 아무 이유 없이 웃김ㅋㅋㅋ
-
문과고 탐구를 사문이랑 생윤or세지 선택할건데 메가패스랑 19패스 중에 뭘 사는 게...
-
ㅠㅠ 또 나만 어렵지..
-
마음먹다는 두자리 서술어 맞나요?
-
마이 퓨처 4
-
- 강은교, 자전 1 이래서 내가 살이 쪘을때 티가나는거였군
-
매년 강사 오개념 논란 평가원 교육청 모의고사 문제 논란 암기량 꽤나 있음(사상...
-
가고싶은 대학&학과는? 14
댓에 적어주세염 일단 나브터 동국대 경행
-
난이도인 국어실모 추천 부탁드려욥
-
머가 더 쉬운거같으세요
-
우하하
-
동아리 활동을 동아리 담당 선생님께서 공부잘하는 친구에게 제 활동을 복붙해준 것...
-
내년에 나랑 경쟁함
-
잇올커리 1
잇올가면 커리 다 짜주시나요? 메가 대성 패스 있으면 그걸로 짜는거죠?
-
아침은 커피랑 먹어야지...ㅋㄱㅋ
-
오늘할거 2
11더프 풀고 채점하고 맛보고 즐기기
-
기출+ebs 정리하기로 결정 지신감만 떨어져서 보기 싫음 ㅋㅋ
-
아까 집나갈 때 아빠가 ‘오잉 왜 아직 안나갔지....?’ 하는 눈으로 쳐다보심...
-
나쁘지않을거같은데
-
1컷 96의 악몽은 진짜...
-
고등학교 다닐때 사귀던 사람은 사귀기 쉽겠지만...ㅋㅋㅋㅋㅋㅋ
-
불수능이면 자신의 지능의 한계를 깨닫고 입시판 탈출가능함 물수능이면 쓸데없는 희망만...
-
고대 성적 10
이정도면 고대 낮은 과 갈 수 있나요? 물론 이거 이투스 모고이긴 한데.. 영어 2...
-
대성 인강 복귀는 하실까요…? 아직 신규강사 3명 남았던데 그중 하나일지 의견좀요
-
평균적으로 작수보다 어려운가요??
-
오르비 짜요
-
이런 얼어 죽을 0
(진짜임)
-
박광일 풀커리 vs 김상훈+손창빈 어떤게 나을까요? 대인라 들어보신분이나...
-
눈사람 자살 사건이 최승호 작가님 책이더라구요..? 3
아쉽게도 북어는 없었음ㅠㅠ 대설주의보라고 다른 책에 수록되어있다고 하네요
-
실모많아서조와요
읽어볼게요~