부정방정식 질문입니다.
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[서울=뉴시스]박지혁 기자 = HD현대중공업이 올해부터 본격적으로 미 해군 함정...
-
수능공부 관리하면서 도와주겠다는 친구가 오히려 자존감만 낮추네요 0
대학다니다가 다시 수능보기로 결심을 해서 수능공부중인 한 휴학생입니다... 마침...
-
한미, '원자력 수출·협력 MOU' 정식 서명…"원전 협력 강화" 1
한수원·美 웨스팅하우스 갈등 중 정부 간 협력기조 확인 (서울=연합뉴스) 김동규...
-
뱃지달앗어요 3
이제야!!
-
어차피 커뮤에서 싸워도 서로 사상도 안바뀜 ㅈㄴ 의미없는 키배
-
중대 홈페이지?
-
약속의 2시 흐어어어업
-
좀 긺...
-
경성대 앞에 놀거리 많음 경성대역(버스 정류장)에서 내리면 주변에 몇개 건물들이...
-
재수 미적분 8
25수능 확통 낮3 나오고 재수하려고 하는데 선택과목 미적분으로 바꾸는거 어떻게...
-
이거 릴스 개웃기네 ㅋㅋㅋ
-
안 부족함?
-
양쪽 다 있네 ㅎㄷㄷ
-
정시인가요? 벌써 발표를 ㄷㄷ?
-
가즈아
-
나도이제약대생? 8
일케 올리면 되나
-
Orbi지형T_[점수를높이는5M.Column] Ch1.등차수열'지형도를그리다' 3
[5-Minute Column] "Major Past Math Questions...
-
뱃지 나왔어요 9
똥테랑 잘어울리네요 ^^
-
. 6
-
ㅈㄴ부럽네 진짜
-
잘잣다 4
-
업보청산
-
는 언제나 당연한 거고 이거 좀 보세요 https://orbi.kr/00071308476
-
내신 고2 수학 4
예비 고2 준비하는 학생입니다.개념 잡고 모의고사 문제를 풀면 고2모 기준...
-
현재 고2이고 고1 수학에 빵꾸가 많이 나서 메꾸고 수1을 들어야 할 것 같습니다....
-
계속 귀여운척하면 진짜 귀여어 질지도 몰라요!!!
-
39명 모집에 240명 지원했어요 ㅈ바류ㅠ
-
윤석열 체포하는거 보면서 좋아하는거 보면 아이러니함
-
약대 ㅇㅈ 14
우오오오오옹
-
속아주는 척이라도 해주세요
-
앞으로 자작 국어 관련 내용 아니면 글 안 쓸 거임.. +) 제가 이상한 소리 하는...
-
파카= 잉크회사 0
파카는 좋은 잉크회사이다. 착한 파카는 죽은 파카뿐이다.
-
기를 썼네
-
덕코 내놧 8
내놧
-
정치커뮤를 하면 11
정치공부 직빵이에요 동시에 본인의 희망 학과가 사회과학대학 안에 있게 되는 경험을...
-
늘 느끼던건데 이름 귀여움 재료
-
첨언 부가함 1
참고로 메이저 지거국도 기준마다 ㅈㄴ 다름 애초에 부산대나 경북대같은 메이저 지거국...
-
ㅈㅂㅈㅂㅈㅂ....
-
극보수 극좌파 유튜버를 동시에 구독해서 영상을 주기젇으로 같이 보면 공부됨 +나무위키 —> 정잘알됨
-
모의면접 이거는 안해도되는거 맞나요?? 실제면접만 응시하면 되는거죠? 모집요강...
-
탄핵? 7
노무현 (이명박) 박근혜 (문재인) 윤석열 이제 다다음 대통령도 탄핵 되나
-
평가원 #~#
-
ㄱㄱ
-
하나도 모름..
-
尹대통령, 관저 나서며 "국민들과 함께 끝까지 싸울 것" 9
[파이낸셜뉴스] 윤석열 대통령이 15일 한남동 관저에서 이동하기 전 "국민들과 함께...
-
정치 공부는 뭘로 해야함..? 국회의원도 잘 모르고 암튼 여러모로 잘 모르는데
-
정치성향 중요하게 보려나
-
둘 중 어디 선택하나요? 이런 경우 지거국 선택하는게 좋지 않요까요? 수만휘에...
-
자전거사고싶다 4
ㅠㅠㅠㅜ
-
스크류형 만듦샤 개 ㅅㅂ이네 또 고장남 뻐커 이 ㅅㅂ것들
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.