MediVa : 수학 시험의 기술(2012)_4월모의 대비2 - 행렬의 성질 정오판정
수학시험의기술(2012)_3.pdf
안녕하세요. MediVa입니다. 4월 모의고사 대비 자료입니다.
3회 정도가 연재될 것 같고, 이번 자료는 2번째로 행렬의 정오판정에 관련된 자료입니다.
작년 4월 모의고사의 중요한 기출과 수능의 출제 요소를 풀 수 있는 '기술'을 정리했습니다.
이 자료는 <수학 시험의 기술>에 바탕을 두고 만들어졌습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잠이오는군아 0
교과서 보는데 너무 잠온다
-
25수능 언매 95점이지만 과외하고싶어
-
기출융합
-
시대컷 받았는데 그냥 말 안됨 너무 고였음.. 물갈이한 첫해 노리는거 괜찮아보이는데
-
근데 왜 칸수가 떡락함뇨 ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ 으아아아ㅏㅏ아ㅏㅏㅏㅏㅏㅓㅓㅘㅓㅏ
-
오르비님들이 보기에는 어느정도 가능할 거 같은지 궁금하여 한 번 여쭈어봅니다!...
-
세상이 미쳐돌아가네ㄹㅇ
-
방구발사 히히 1
냄새 고소하뇨
-
[속보] 오세훈, 동덕여대 시위에 "폭력·기물파손은 법적으로 손괴죄" 1
오세훈 서울시장은 동덕여대에서 남녀공학 전환 논의에 반대하는 시위로 발생한 피해를...
-
사탐을 하자니 진짜 가오상함…
-
원플원 하나 보관하려고 하면 말도 못알아듣고 다른 지역 세군데 연속 중국인이네
-
오세훈, 동덕여대 시위에 “법적으로 손괴죄…공공 부담 적절치 않아” 1
오세훈 서울시장이 지난 27일 열린 한 대학 강연에 가서 “동덕여대 시위는 법적으로...
-
수분감 교재만 풀기 비추? 강의도 꼭 들어야 함?? 1
용돈 지원 안받고 혼자공부하는거라 넘 부담스러운데 ㅠㅠ 꼭 들어야하나요? 교재만 푸는건 별로일까요?
-
23 화작 컷 대폭상승 24 확통 컷 대폭상승 이런 특이 케이스 말고는 어지간하면...
-
밤에 너무 피곤함 데이장 안열어주면 워렌버핏 말처럼 슨피만 사고 자는게 맞음 올해...
-
공통틀 언매 95 확통 100 각각 백분위 몇 보심요 ? 0
97 98이 정밴가 98 99는 절대 안 되겠죠 ?..
-
아메추 10
뭐먹뇨
-
틀려서 78인데 2뜨라고 시발연아
-
그때 아기고딩시절이라 집모했었는데 비문학이 개인적으로 되게 쉽게 느껴져서 22급은...
-
마음의 준비를 해야겠군
-
다 맞아라 ㅠ?
-
정답률이 30%네 확통 선택자 중 하위 70%는 사실상 공부 포기했다는거 아닌가...
-
파란문법 삽니다 0
많이 더러워도 괜찮아요 가격 선제시해 주세요
-
서성한-연고대 라인이신 분들 투표해주세요
-
그냥 혼자서 적당히 진학사 보고 하는 거랑 차이 크나
-
평균이 미쳐날뛴다던데
-
오늘까지던데 낼부턴 가격 오를라나요..?
-
1밖에 공부안해봐서 ㅠㅠ
-
55강인데 끌리네요
-
안 돼
-
되야만해
-
이더리움 풀매수하셈 돈이 적다면 미국주식에서 ethu 풀매수 ㄱ 진짜임
-
숨쉬기도귀찮다 4
-
과외 하고싶다 0
6평 국어 4에서 수능 1까지 올렸는데…
-
궁금.
-
오르비 뱃지 4
작년부터 합격증명서로 한 5번 인증했는데 안되서 재학증명서로 다시 인증했는디 또...
-
ㅅㅂ ㅈ댓네
-
언제까지 인강만 들을 수도없고 계획도 유동적으로 바뀔 수 있는데 일단 할 교재만 사는게 낫겠죠?
-
커리 평 0
문학 : 강기분 독서 : 브크 수학 : 뉴런 영어 : 키스 로직
-
자기 패드로 자기 공부한 거 보여주다가 여장 사진 쫘르륵 나와버린 거임
-
건동홍 가능한가요? 상향은 최대 어디까지 지를수 있을지도 궁금하네요 ㅠ
-
어휴
-
후한 거라고요? 진짜로?
-
후한거임 짠거임?
-
미적 0
공통3틀 미적 2틀 80점이 좋은 거임 공통2틀 미적 3틀 80점이 좋은 거임??
-
크롭티나 메이드복 입어줬으면 좋겠다
-
부모님 반응이 영 시원찮음 난 경외시 문과계열보다 그냥 동홍 자전으로 넣고...
-
어떡하지
-
1도 안 꿀리네 ㄷㄷ
-
노운현 2
무지잘한다
3번째 문제는 4월모의고사 작년 기출에서 생각보다 정리할 내용이 많지 않아서 4월 모의고사 대비에서는 다루지 않고, 4월 모의가 끝난 후 6월 모의고사 대비기간에 수능, 평가원 기출로 다루는 편이 나을 듯 합니다. 보다 좋은 자료로 찾아뵙겠습니다.
좋은자료감사합니다 Goo:-D
좋은 자료 감사합니다
감사합니다~~
행렬에서 곱셈의 교환법칙이 성립하는 경우는 A 가 B또는 B의 역행렬에 관해 표현되면 됩니다.
ㄱ 에서 ㅡ2B 를 우변으로 이항하면 A= 2B+E 로 A가 B에 관해 표현되죠?? 그럼 교환법칙이 성립하는 겁니다.
언제 반례를 다 찾고 있습니까 ㅡㅡ; A^2=B^2 처럼 양쪽 다 거듭제곱 형태면 교환법칙이 성립하지 않구요.
한 행렬이 다른 행렬의 다항식 형태로 표현되는 경우라고 해야 좀 더 맞는 표현일 것 같네요.
간단한 경우로 xA + yB =kE 가 되는 형태는 제 자료에도 명시를 해 두었습니다.
A가 B에 관해 표현된다는 말은 'A= B에 대한 다항식'의 형태를 말씀하시는 것 같은데,
그 경우는 설명에서는 빠져 있던 것 같습니다.
그리고 반례를 찾는 것은 답을 확신하기 위한 수단입니다. 제 원고를 보시면 알겠지만
반례를 찾는 과정 중 '여기까지 의심해 보고 시간이 없으면 넘어가라'고 서술을 해 두었습니다.
하지만, 문제를 풀다 보면 이런 교육청 문제처럼 정형화된 형태만 등장한다고 장담할 수 없으므로,
적절한 반례를 찾는 것 역시 연습의 대상이 되며, 그렇기 때문에 한 문제를 깊이 공부하기 위한 자료의 특성상 반례를 찾아가는 흐름에 대해서 서술했습니다. 그리고 제가 찾은 반례도 하늘에서 뚝 떨어진 것이라기보다는 어느 정도 논리에 의해서 반례의 범위를 줄이는 과정에 초점을 맞추어 서술하고자 하였습니다.
행렬의 성질 문제는 수능에 나온다면 계속 지금까지 보지 못한 형태로 제시할 확률이 높기 때문에,
특정한 행렬의 구조들을 달달달 외우기보다는 문제에서 추론해서 풀어 가는 것이 필요합니다.
그렇기 때문에 이 자료에는 다소 장황할지 모르지만, 최대한 일반적이고 보편적인 추론 과정을 적고자 하였습니다.
부족한 자료에 대한 비판 감사합니다.