수학의 원리와 개념 확실하신분들! 연립방정식질문드립니다ㅠ!!
수학문제를 풀던중에 무심결에 연립방정식의 풀이에 대한 원리를 생각해봤는데
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이젠 숫자만 보면 1557 각을 보게 되네 1557 라이브로 봤을 때는 진짜...
-
얼버기 2
구욷~~
-
원래 천원 아니였냐 한줄에....
-
난 이감모의 매체가 이만큼 치졸한 지 몰랐지 .. :< 8
여기서 ‘꼭‘이 나트륨 섭취해야 하는 이유를 강조하기 위해 사용되었다. (O, X)
-
먹어본 사람 있음?
-
공부를 안해봐서 공부가 얼마나 힘든지 모르나
-
국제수지란? 남의나라랑 거래 할 때 수취한 금액과 지출한 금액의 차이 국제수지...
-
스카 가는 중 0
수능 일주일 전에 정신 차린 나란 인간 ㅠㅠ
-
수능 연기 가능성 있나 ? 나라가 이래저래 왜이러누...ㅠ
-
헉
-
지거국에서 국숭상가로 옮기는 건 다운그레이드인가요? 3
옮긴다면 지거국 비상경 인문에서 국숭상가 비상경 인문으로 가게 될 것 같습니다 집...
-
학교생활 적응에 실패해서 도피성으로 2학기 휴학하고 반수 들어갔는데 도피성이라...
-
신석열의 의료계 정싱화로 인해 입결이 얼마나 떨어질지 ?!
-
덕통사고 당햇다 0
https://youtu.be/8cWaddesKD4?si=n4bc7QQr8STmh6gm 지떠여니
-
알텍 킬러 0
미적 알텍에는 킬러 문항 아직 안빠졌나요?
-
1일 2실모하고 수능날 1 받아올게
-
고1-고2 10모 항상 2떳는데 신성규쌤 신기해 수1,수2 들어도 괜찮을까요?...
-
국어 실모 0
무조건 8시40분터 푸시나요??? 낼 11시반부터 국어실모 풀듯한데
-
탐구제외 하던거 반복해서 ㅈㄴ 지겨울듯
-
뭐하고 계심
-
최저 과목 선택 0
친구가 4년만에 수능판 다시 들어와서 2026수능으로 최저 맞춰서 대학 옮기려고 함...
-
하 진짜 1컷 50 50 50 쳐만들면.. ㅋㅋ 실수하는순간 인생이 망하는데
-
Whale. 0
I will shine the way for you Dont let me drift away
-
작수물리 16번 중성자 헬륨질량 더 큰거 어케알아요? 2
그럴거같긴한데 물리 개념배울때 배우나.?
-
늦잠 자버림 오늘 일어나서부터 수학 지구 한국사 마무리하고 남은 3일 모의고사 +...
-
으흐흐흐 8
일루와잇!!!!!
-
1등급 비율 2.3퍼 말이 됨? ㅋㅋㅋㅋㅋ 솔직하게 수능에 내도 어렵다 소리 나올 거 같은데 ㅌㅋㅌ
-
특모 1
강민웅 특모 파이널2 난이도 어떤가요? 수능에 나오면 1컷 얼마쯤일까요
-
대성 패스 구매하실 분 메가커피 기프티콘 같이 받아요 0
대성 마이맥 패스 구매하실 분 메가커피 쿠폰 같이 받아요! id :...
-
최저 없음 이라고 하는데 아예 응시 안 해도 되는 거 맞죠?ㅠㅠ 괜히 불안해서요..
-
ㄹㅇ 탄탄함 ㅋㅋㅋ 한번 다 읽으면 걍 잊혀지진 않음
-
ㅇㅇ 불가능
-
공유해주실 수 있나요? 마지막 수업에 무엇을 쓸까요
-
우으 피고내 6
사케 마싰어
-
수능이 두렵지 않아
-
여름방학때 메가패스 3개월치 끊어놓은거 기간이 끝나서 메가패스 다시 사고(내년...
-
걍 듣던강의나 마저 다 듣고 갈까요 9덮 1컷 10덮 2컷인데 찍맞도 있을거라 불안하긴하지만…크흠
-
2시 28분 1
아까 열차 놓쳐서 28분 열차라도 타고 꿈나라로 갑니다 ㅋㅋ 다들 잘자용
-
2시 22분 2
자러 간다. 얼버잠
-
phi는 공집합
-
아 피곤해 4
근데 하나도 안 졸려 걍 연속 실모를 벅벅
-
현역때 낮은 지거국이였는데 옆그레이드 되는듯한 기분;;
-
상상컨 인강에서 5-10 독점이신데
-
여쭤보고시픈게 있는데 쪽지 ㄱㄴ???ㅜㅜㅜ급합니드어
-
시발점 들으려다가 강의수가 너무 많아서 이미지쌤 미친개념이랑 수분감 병행하려는데...
-
너무 티 났나. .....
-
작년에는 아빠가 태워다주셨는데 이번 년도에는 불가피하게도 태워다 줄 수가...
-
이감 6-9 1
독서론 3번에서 쳐맞고(나만 어려웠냐 정답률 왜이럼) 6,14에서 쳐맞고 21...
-
뭘로 찍어야되나요?
-
과자사와야지 1
공부 더 해야 해
지적하신게 맞아요.
정확한 논리는 우리가 보통 하는 과정은 x,y가 해라면 만족해야하는 조건
즉, 해의 필요조건을 구한 것이구요.
논리적으로는 이렇게 구한 해를 실제로 대입해서, 성립하는지 확인해야 정확한 해가 되는 것입니다.
(예를 들어, 분수방정식 푼 경우는 이런식으로 해를 구하면 흔히 말하는 무연근이 나올 수 있는 것이죠.)
정말 감사합니다^^
궁금한점이 있는데요!
필요조건이라하믄 이방법으로 해를 구하였을때
해 일 수 있는 가능성이 있는 것은 모두 포함 한다는것이 아닌가요?
그렇다면 어떻게 저 방법을 통한다면 해일수 있는 모든것들이 구해지는것일까요?
(질문의 요점은 이런것들이었는데 제가 전달을 잘하지 못한것같군요ㅠㅠ)
첫째 질문에 대한 답은 네 이고요.
두번째 질문에 대해서는
해라면 서로다른 식의 x,y과 같은 x,y가 될 것이고, 그로부터 유도한 식들역시 그 x,y가 모두 만족해야 하니까 입니다.
으엉ㅠㅠ
그러니까 왜 유도한 식들이 x와 y일수 있는것들을 모두(!) 포함하는것일까용?
x,y일수 있는 것들이 그 식을 만족해야하니까요! 이 문장이 이해가 안가시는건지요?
아님 이 문장은 이해가는데 그 다음이 이해 안가시는지요?
연립방정식의 풀이를 요약하자면
두식의 x,y가 같다는걸 전제로 하나의 x또는 y만 의식으로 만든다.
(즉 우리가 알고있는 방정식으로 만듭니다)
인데요,
이 말은 즉슨, 연립되는 두식의x와 y가 같은 어떨때, 이 식이 성립된다는것이겠죠,
두식의 x와 y가 같을때 모두(!)를 이 식이 나타내느냐는 별도의 설명이 필요한것아닐까요?(사실, 이것이 당연히 옳고 그르냐보다 왜 그러한가를 어떻게 설명하는지가 정말 궁금합니다)
학생이기에 아직 많이배워야하는 상황이죠ㅠ