제가 변곡점을 잘못이해하고있는걸까요.
f(x)= x/x^2+1
그래프를 미분하면
f'(x)=-x^2+1/(x^2+1)^2
또미분하면
f''(x)=분자에 +-루트3
원래 함수를 미분하면요 . x축에 두근을가지면서 위로볼록인 그래프가나오는데요.
변곡점이라는게 함수값을 두번미분했을때(즉.이계도함수에서) 음양부호의변화잔아요.
이렇게말한다면 한번미분했을때의 함수에서 위의 식대로라면 위로볼록일때 x=0에서 즉 기울기가 0이되는경우
(그림으로 본다면) 한곳밖게없어야할텐데(위로볼록이니깐) 어떻게 이계도함수값에선 음양부호 변화가일어나는곳이 두곳이 더생겨날수있죠?
분명히 한번미분한함수값의계형은 위로볼록이니깐 한곳밖게없어야될텐데여 먼가 제가 잘못알고있는걸까요....?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이젠 숫자만 보면 1557 각을 보게 되네 1557 라이브로 봤을 때는 진짜...
-
얼버기 2
구욷~~
-
원래 천원 아니였냐 한줄에....
-
난 이감모의 매체가 이만큼 치졸한 지 몰랐지 .. :< 8
여기서 ‘꼭‘이 나트륨 섭취해야 하는 이유를 강조하기 위해 사용되었다. (O, X)
-
먹어본 사람 있음?
-
공부를 안해봐서 공부가 얼마나 힘든지 모르나
-
국제수지란? 남의나라랑 거래 할 때 수취한 금액과 지출한 금액의 차이 국제수지...
-
스카 가는 중 0
수능 일주일 전에 정신 차린 나란 인간 ㅠㅠ
-
수능 연기 가능성 있나 ? 나라가 이래저래 왜이러누...ㅠ
-
헉
-
지거국에서 국숭상가로 옮기는 건 다운그레이드인가요? 3
옮긴다면 지거국 비상경 인문에서 국숭상가 비상경 인문으로 가게 될 것 같습니다 집...
-
학교생활 적응에 실패해서 도피성으로 2학기 휴학하고 반수 들어갔는데 도피성이라...
-
신석열의 의료계 정싱화로 인해 입결이 얼마나 떨어질지 ?!
-
덕통사고 당햇다 0
https://youtu.be/8cWaddesKD4?si=n4bc7QQr8STmh6gm 지떠여니
-
알텍 킬러 0
미적 알텍에는 킬러 문항 아직 안빠졌나요?
-
1일 2실모하고 수능날 1 받아올게
-
고1-고2 10모 항상 2떳는데 신성규쌤 신기해 수1,수2 들어도 괜찮을까요?...
-
국어 실모 0
무조건 8시40분터 푸시나요??? 낼 11시반부터 국어실모 풀듯한데
-
탐구제외 하던거 반복해서 ㅈㄴ 지겨울듯
-
뭐하고 계심
-
최저 과목 선택 0
친구가 4년만에 수능판 다시 들어와서 2026수능으로 최저 맞춰서 대학 옮기려고 함...
-
하 진짜 1컷 50 50 50 쳐만들면.. ㅋㅋ 실수하는순간 인생이 망하는데
-
Whale. 0
I will shine the way for you Dont let me drift away
-
작수물리 16번 중성자 헬륨질량 더 큰거 어케알아요? 2
그럴거같긴한데 물리 개념배울때 배우나.?
-
늦잠 자버림 오늘 일어나서부터 수학 지구 한국사 마무리하고 남은 3일 모의고사 +...
-
으흐흐흐 8
일루와잇!!!!!
-
1등급 비율 2.3퍼 말이 됨? ㅋㅋㅋㅋㅋ 솔직하게 수능에 내도 어렵다 소리 나올 거 같은데 ㅌㅋㅌ
-
특모 1
강민웅 특모 파이널2 난이도 어떤가요? 수능에 나오면 1컷 얼마쯤일까요
-
대성 패스 구매하실 분 메가커피 기프티콘 같이 받아요 0
대성 마이맥 패스 구매하실 분 메가커피 쿠폰 같이 받아요! id :...
-
최저 없음 이라고 하는데 아예 응시 안 해도 되는 거 맞죠?ㅠㅠ 괜히 불안해서요..
-
ㄹㅇ 탄탄함 ㅋㅋㅋ 한번 다 읽으면 걍 잊혀지진 않음
-
ㅇㅇ 불가능
-
공유해주실 수 있나요? 마지막 수업에 무엇을 쓸까요
-
우으 피고내 6
사케 마싰어
-
수능이 두렵지 않아
-
여름방학때 메가패스 3개월치 끊어놓은거 기간이 끝나서 메가패스 다시 사고(내년...
-
걍 듣던강의나 마저 다 듣고 갈까요 9덮 1컷 10덮 2컷인데 찍맞도 있을거라 불안하긴하지만…크흠
-
2시 28분 1
아까 열차 놓쳐서 28분 열차라도 타고 꿈나라로 갑니다 ㅋㅋ 다들 잘자용
-
2시 22분 2
자러 간다. 얼버잠
-
phi는 공집합
-
아 피곤해 4
근데 하나도 안 졸려 걍 연속 실모를 벅벅
-
현역때 낮은 지거국이였는데 옆그레이드 되는듯한 기분;;
-
상상컨 인강에서 5-10 독점이신데
-
여쭤보고시픈게 있는데 쪽지 ㄱㄴ???ㅜㅜㅜ급합니드어
-
시발점 들으려다가 강의수가 너무 많아서 이미지쌤 미친개념이랑 수분감 병행하려는데...
-
너무 티 났나. .....
-
작년에는 아빠가 태워다주셨는데 이번 년도에는 불가피하게도 태워다 줄 수가...
-
이감 6-9 1
독서론 3번에서 쳐맞고(나만 어려웠냐 정답률 왜이럼) 6,14에서 쳐맞고 21...
-
뭘로 찍어야되나요?
-
과자사와야지 1
공부 더 해야 해
왜 f'(x)의 그래프가 위로 볼록하게 생겼다고 생각하시는지 잘 모르겠네요. 실제로 그래프를 그려보면 3곳이 나타납니다.
f'(0) = 1
f'(2) = -3/25
lim_{x→∞} f'(x) = 0
만 봐도 주어진 그래프가 위로 볼록일 이유가 없죠.
제가 '한'선생님한테 배운바에의하면 몇개 함수의 그래프 개형을 그리는 과정에서 보통의경우 분모가 제곱이고 어 그러니깐. 어떤수를대입하건 분모가 양수인경우...라고해야되나 한선생님은 딱 '분자'만 고려하시더라구요. 미분함수값의 분자에있는 그니깐 -x^2+1을 본다면
분자만고려하는경우 -1하고 +1에서 음양의부호변화가일어나니깐 그점에서 극댓값을갖고 여기서 미분함수의 그래프의 개형을 본다면 위로볼록인 그래프가나오고 결국 x=0에서 사실상 극댓값을갖는 즉 변곡점을 갖는 점 하나만 존재한다고 판단했거든요. 댓글달아주신분님께서 미분함수값이 위로볼록이아님을 알려주시긴했는데 제가 위에서 한선생님한테 배운 오류좀 정정해주시면 안될가요.
가장 간단하게 말해서, 함수를 바꾸면 당연히 결론이 달라질 수 있는 것입니다. 그게 이유의 전부라고 해도 과언이 아니지요.
물론, 어떤 한 점의 근처만 보고 싶을 때에는 주어진 방법도 나쁜 방법은 아닙니다. 하지만 넒은 범위에서 보면 분자만 본다든가 하는 편법이 원래 그래프에 대한 정확한 정보를 전달하기에는 너무 부족해지지요.
제시하신 방법은 수학적인 방법이 아니라 단지 한정된 시간 내에서 주어진 함수의 개형을 빠르게 판단하기 위한 편법일 뿐이며, 따라서 이를 전적으로 신뢰하는 것은 당연히 문제가 있습니다.
아 감사합니다. 편법이었군요. 절대적으로 신뢰하지않겠습니다.