미분가능 문제 하나만 알려주세요..
이런 문제는 어떻게 접근해서 풀어야 하나요..?
답지는 그냥 반례를 들어서 풀어주고
lim 붙어있는것을 그냥 f'(X)로 하면 안되고 그런게 너무 헷갈립니다..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시발
-
저도 ㅇㅈ 2
원준
-
으흐흐 5
-
데워먹을까 계란후라이랑
-
재미엄네.....
-
저의 페페가 신사다워졌네요
-
눈 인증(이번엔 찐) 21
.
-
ㅇ왜 맛은 그대로인데 묵은 발톱 때 향이 나는것이지
-
수리논술 0
수리논술 보통 몇달전부터 준비하나요? 지금 수능 8달 정도 공부했는데 지금부터...
-
멘헤라여도 3
사랑받을수있을까요
-
번이야
-
[속보] 이별했습니다 21
새해 이벤트 지리노 성격 다 버렸네 ㅋㅋ
-
땡기는 거 있으면 추천자 천덕 줌
-
ㅇㅈ 14
윤아 보고가라
-
님?
-
다 가셈 이제 4
오르비 내꺼함
-
생기부는 별로 좋지 않은 내신 1점 극초반대인데 만약에 수능으로 화작 미적 화1생1...
-
본 애니 최애의 아이 1화 봇치 더 락 전편 오빠는 끝 원작만화까지 약간 이런 일상...
-
다즈비 펀치! 다즈비 펀치!
-
진지한 고민 6
칠까말까 칠까말까 칠까말까 칠까말까
-
눈 넘 많이 와서 스킵이래 앗싸
-
팀원들이 사이드 밀고 있을때 미드에서 혼자 앞에서 죽는경우 그래서 금재존이라고...
-
냥메타 좋아요ㅜ 2
제발더해주세요
-
대학생의 기초! 국민대 새내기들을 위한 교수님께 메일 작성하는 비법! 0
안녕하세요. 합격자 후배님! 저는 국민대 기계공학과 23학번입니다. 국민대에 처음...
-
순애가 11
순순히 애를 낳아라 맞음?
-
오뿌이 한명한명 다 소중한 저한텐 넘 가슴아픈 일이네요 새해를 맞아서 떠나가신걸까...
-
Hello mr my yesterday가 더 인상깊음 하도 들어서 그런가
-
최근에 좀 여러모로 부러운 친구가 있었는데 친해지면서 딥한 얘기를 하다보니까 이...
-
협곡 들어와라 12
넵
-
얼마나
-
ㅇㅈ! 11
냥이나 보고가라
-
잘자여 낼봐 친구들
-
화2는 그래도 시간 오래 쓰면 하겠는데 생2는 도저히 못건드리겠는데
-
애니 본 거 7
기억나는대로 다 써봄최애의 아이 조금암살교실 진격의거인나루토사펑체인소맨 크아아악 기억 안 나
-
개념만 김기현쌤하구 기출부터는 양승진쌤 들을생각인데 파운데이션랑 킥오프가 개념이라구...
-
이분도 이름이 코난이라네요..
-
세배는 안하는데 0
세벳돈은 받는다 개꿀
-
애플펜슬이 오링나서 미루다가 걍 낼쓺
-
내 영어 공부법 0
1. 공부하고 집에 돌아와서 디코에서 전세계에서 온 사람글이랑 부질없는 얘기를...
-
이런 건 잘 안 떨어지겠지? 보통 떨어질 원서는 점공 보고도 느낌이 오나요?
-
좋앗을것을
-
Panorama(파노라마)- IZ*ONE(아이즈원) 이세계아이돌(ISEGYE IDOL) COVER 1
대 대 대 노래 진짜 너무 잘부른다
-
나까무라 지누스케
-
애니 추천 좀 7
공부, 오르비, 운동 중에 하나 버리고 애니 보겟음
-
렌고쿠 쿄쥬로
-
계속 버티면서 수업듣고 생각해보고 복습하면서 따라가는게 나을까요?
-
아니 이럴수가 0
나 하루종일 오르비만 한거야?
-
다들 잘 아네
교과서에 '미분'의 정의를 다시한번 보시는게 좋을 듯 싶네요. 미분이라는 것은 평균변화율의 극한값 입니다. 위의 문제처럼 f(x)가 미분가능한 다항함수라는 말 등이 언급되어 있지 않으므로, 미분가능하다 라는것을 알려면 평균변화율의 극한값을 계산해야지 알 수 있습니다.
ㄱ. 같은경우 앞에 lim 을 빼면 평균변화율이 됩니다. 거기다가 lim 를 붙였는데 그 값이 0 으로 존재한다는 것은 즉. x=1에서 미분이 가능하다는 뜻이지요. 미분이 가능하면 연속이다. 라는것은 교과서에 나오는 것이므로 ㄱ은 맞는 것이되구요.
ㄴ. 도 평균변화율의 극한값이 존재하므로 x=1에서 미분이 가능합니다. 앞의 식을 이용해서 뒤의 식을 적절히 변형하면 같은 꼴 2개로 나뉘어 지는 것을 알 수 있죠. f(1)을 빼고 더해서 식 2개로 나누면 앞의 식과 동일한 꼴이 2개가 나오는 것을 알 수 있습니다.
ㄷ. 은 미분가능하다는 언급이 없이 함수의 꼴이 주어져 있으므로 직접대입해서 구해야합니다. 특히 주어진 f(x)꼴이 절대값을 포함하는 즉, 미분이 안되는 곳이 있는 특이한꼴의 함수이기 때문에 반드시 대입해서 구해야합니다. ㄴ번 처럼 구해서 2f'(1)이겟네 라고 구하시면 안됩니다. ㄴ과 달리 ㄷ은 x=1에서 평균변화율의 극한값이 존재한다는 근거가 없기때문입니다. 물론 그려보면 쉽게 미분불가능인 것도 알 수 있구요.
다항함수처럼 미분해서 도함수를 구한 뒤 극값을 찾는 경우나 그래프 개형을 알아보는 경우 등을 제외한 '미분이 가능한가?' 를 판단하는 문제에서는 무조건 미분의 정의를 이용해야합니다. 미분의 정의는 평균변화율의 극한값입니다. 이것이 존재하면 미분이 가능한 것이고 존재하지 않으면 미분이 불가능 한것이죠.
ㄷ은 기하적으로 보면 x=1에서 좌우로 거리가 h만큼 떨어진 좌표의, 함수값의 기울기(평균변화율)가 x축과 평행한 선이 나옵니다. h가 0으로 갈수록 x=1로 가까워지는 비율도 같으므로 계속 x축에 평행한 기울기 0인 직선이 나옵니다.
자세한 설명 감사드립니다. 꼼꼼히 읽고 다시 한번 생각해봐야겠네요.
인강선생님들이 대표적으로 '잘못된 풀이 방법'으로 예를 드는 문제네요 ㅋ