한석원 실모 나형1권 2회 18번행렬문제 질문이요
ㄷ번 어떻게 푸는지 좀 알려주세요;;
위에 ㄱ ㄴ 이용하는것 같긴 한데 잘 모르겠네요
그리고 문제 풀다보니까 BA하고 AB하고 같은걸 이용하는것 같은데 그거 두개가 같은지 어떻게 알 수 있는거죠??
ㄴ을 이용해봐도 행렬A(BA+E)에서 앞에곱해진행렬이 A가아니라 임의의 X라고 가정을 하면 BAX=XBA나와서 AB=BA인지 모르겠더라고요
답변부탁드립니다 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
너는 평생 짓밟으며 살아. 머지않은 어느날 너의 진심도 누군가에게 짓밟히겠지...
-
어제 먹은게 연세우유빵이랑 샌드위치가 전부긴 한데 그닥 배가 안 고프네
-
수능 출제를 보통 1-2달 전에 하지 않나여 그래서 교수님들 실종되는 거고...
-
미미미누 개떡상이네
-
그쯤에 100일 전으로 돌려보내주고 열심히 하라 그러던데.. 돌려보내줄때가 됐는데...
-
그게 나야 바 둠바 두비두밥~ ^^
-
진짜 세상이 무너져도 이짓을 1년 통으로 더 한다??? 말이 안됨 그냥 제발 올해...
-
한의대 중에서 입결이 가장 낮은 한의대
-
내가 만드는 거였네..
-
확통이 공감ㄹㅇ 9
2,3점짜리 이항정리에서 식 2개면 식은땀남 27번 막히면 살자마려움 4점짜리...
-
평가원에서 언급된 적 있나요? 사설에서 오늘 처음 알았음
-
밀려서 영어는 버렸는데도 계속 밀리네ㅜㅜ
-
오지훈 선넘네 0
이게 ㄹㅇ 문제로 나올까… 그리고 이럴땐 식현상에서 행성공전궤도 반지름이 별이...
-
살 쪘어 0
진짜 입시는 독극물임이 틀림없다 그걸 자의로 4번째로 들이키고 있는 나
-
오늘 업적 2
스러너 28번 풂+24번 26번 못 풂
-
수능끝나면 슬슬 등장할 글들입니다 1)문과로 돌려서라도 높은대학 가야됨...
-
이것은 저에게 하는 말이기도 해요,, 힘내세요 선생님,,
-
2023년 (수시) 서울대의대 수시합격 연세대의대 논술전형 수석합격 경희대한의예과...
-
부동산좀 공부하세요.
-
근데 어휘 안나오면 3개버려야함 ㅅㅂ
-
요새 계속 악몽 꾸네 16
으휴
-
확통이한테는 21
실모에서 확통 못 푸는 것만큼 두려운 게 없음 27, 28부터 막히기 시작한다? 걍...
-
행복하고싶은데 1
행복은상대적이기에난충분히행복할수있어 하지만마음에서그걸인정을못해 불행한내가가장편한가봐...
-
있음? 작년에 나왔는데 올해 또나올까?
-
01 있음? 9
화이팅
-
화작전문은 안되려나
-
폐렴은 한국 사망원인 3위에 랭크된 질병으로 젊은층에게는 뭣도 아니지만 노년층에게는...
-
나가토로 0
흠
-
국어 3지문 시간없어서 못푸는 사람 없을 것 같나여? 4
놀랍가도 3지문버리고 푼것중 어려운거 틀려도 5등급임니다 국평이라는 거쥬 ㄷㄷ
-
제발요
-
Ebs하고 안하고 차이 많이큼??
-
화작 4
많이 풀어보는게 답임?
-
저 잘래요 10
잘자라고 한마디 해주세요 다들 좋은 밤 되세요
-
몇년 뒤에 11월 10일이 일요일이 될까 이런 생각
-
기만좀하자 8
본인 한국사 고정 1등급
-
눈이 째진 스테판 커리 코트 속에
-
서양 문물 1
신보 중국 일본 한국 양력 일본철도 한성순보 소학교 일본 한국 도쿄대학
-
꽃을 위한 서시 질투는 나의 힘 혹은 두 시인 작가연계로 나오면 좋겠음...
-
몇 개년 정도 보는 게 좋을까요 ?? 생지 입니다
-
22수능 국어 화작 만점 수학 미적 만점 영어 만점 다맞음 물리학2만점 생명과학2만점 일본어 만점
-
수학 현강 goat 21
누가 도움 많이 되셨나요
-
걸리면 ㅈ되는거라 하더라도 걍 문제 외우고 뒷과목 시간 남으면 마킹할수 있는거...
-
컴공 일기251 8
백준 23304 https://www.acmicpc.net/problem/23304...
-
ㅇㅈ 16
이 샤프는 몇년도 샤프이게요
-
그러나 다음 순간,오렌지의 포들한 껍질에한없이 어진 그림자가 비치고 있다.누구인지...
-
국어 황 인정? 어인정
-
루소: 자유를 억압하는 제도가 사회 계약의 계기이다.(o) 0
생윤 교과과정에도 있었나용? 윤사에 있는건 아는데
-
친구 있어야 특정 당하죠;;
ㄷ에 양변에 E+BA를 곱해보세여
그러면 좌우변이 모두 단위행렬댐
답변 감사합니다~ ㅋ
ㄱ은 쓸모가 없습니다 ㄴ을 이용해야 하는데 어떤 행렬의 역행렬은 하나 밖에 존재 할수 없다는게 전제가 됩니다. 그리고 ㄴ은 참이 됩니다. 즉 (E+BA)의 역행렬이 존재한다면 AB=BA가 성립을 합니다. 그리고 ㄷ을 봅니다.
ㄷ에서는 (E+AB)의 역행렬이 존재한다고 전제를 하고 있습니다. 그런데 (E+BA)의 역행렬이 존재한다면 그건 교환법칙이 성립하게 떄문에 (E+AB)의 역행렬이기도 합니다. 즉 (E+AB)or(E+BA)가 성립한다면 교환법칙이 성립합니다. 이제 ㄷ의 양변에 E+AB를 곱해줍니다. 그러면 중간에 B와 A가 걸립니다. 하지만 교환법칙이 성립함으로 뒤로 다 빼버립니다. 그렇게되면 양변에는 E=E라는 식이 나오고 주어진 식이 자명하다는 사실이 드러납니다.
답변 감사합니다 ~ ㅋ
정확히 얘기하면 ㄱ이 이용되는 겁니다
먼저 ㄷ의 준식에 양변에 (E+BA)를 곱합니다.
(사실 이과정이 가장 중요합니다. 이번 9월 모평 ㄱ,ㄴ,ㄷ의 ㄴ에서도 쓰이지만 준식이나 준식의 변형과정에서 역행렬 자체가 있을 때 거기에 원행렬을 곱해서 단위행렬로 만드는 변형은 매우 자주 출제됩니다. 가령 간단하게 EX) A=A^-1 를 A^2=E 로 바꾸듯이..)
그럼 E={E-B(E+AB)^-1 A}(E+BA)가 됩니다. 이 식의 우변을 전개하면
E=(E+BA) - {B(E+AB)^-1A(E+BA) 가 된고 여기서 ㄱ을 이용하여 우변의 맨오른쪽
A(E+BA)를 (E+AB)A로 먼저 바꾸면 E=(E+BA)- {B(E+AB)^-1(E+AB)A}가 되어 결국
E=(E+BA)-(BA)가 됩니다. 결국 E=E입니다.
그리고 위에 ith님의 풀이는 잘못되어있습니다. ㄴ과 ㄷ은 전제가 다른 상태에서 출발합니다. ㄴ의 전제는 E+BA의 역행렬이 A라는 것이고 ㄷ의 전제는 E+AB의 역행렬이 존재할 뿐 그것이 A인지는 모르는 상태이기때문에 함부로 AB=BA가 성립하지도 않고 E+AB의 역행렬이 E+BA의 역행렬과 같은지도 알 수 없습니다.
와 정말 감사해요 ㅠㅠ ㄴ에서 AB=BA이거 안되는거라고 계속 생각했는데 역시 ㅋㅋ
처음에 (E+BA)곱할려고했는데 계산식이 너무복잡해서 그냥 아닌가보다 하고 계속 뻘짓하고 있었네요 정말감사해요!!