눈팅하다 본 문제 고교과정 풀이
자료 준비하면서 옯 눈팅하다가 본 문제,, 그냥 지나칠 수 없어 풀어봤습니다.
이 극한은 우리 수준에서도 풀 수 있습니다ㅎㅎ 아이디어가 필요할 뿐.
뭐 사실 고등학교 교육과정으로 못푸는 극한들은 많죠.
하지만 그런 극한들은 수리논술에서 조차도 제시문 도움 없이는 출제되지도 않구요.
다들 테일러/맥클로린 언급하시던데...대학생들이길 빕니다.
수리논술에서조차 대학수학은 절대적으로 필요 없습니다. 참고하시라고 글 써놓습니다 ㅎㅎ
필자 본인은 고1 때부터 테일러 급수 알고 있었음. 좋은 머리에 엄청난 선행? 대학 프리패스일 줄.
그렇게 깝치다가 고3 논술 올광탈하고 재수 후 교육과정 뇌에 재주입 후 논술 All 붙
대학수학으로 풀어봤자 점수 온전히 못받습니다,, 안줍니다.. 아래는 한양대 입학처피셜
교훈은? 어떠한 이유로도 대학수학은 무쓸모다.
의대논술 정도 다루는 친구들이라면, 어느 정도 용인되긴 하지만.
여기서 용인된다는, 의대논술에선 대학수학 마구 써도 된다는 뜻이 아닙니다.
학습을 할만한 사고력이 있는 상태에서 그 내용을 이해할 수 있을 정도로 brain을 태우는 것에 의미가 있다는 것.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학공부법질문 0
작수28,작년6월28같은 문제를 맞추려면 어떤공부가 필요하다고 생각하심? 그러니까...
-
되면 레전드인데
-
친구들이 국숭세단, 특히 세종대를 많이감..물론 의대도 많긴 하지만 1학년때 반에서...
-
입을 일이 잘 없뇨..
-
ㄷㄷ
-
연대 논술 2배 이벤트 서성한 중 이과 정시에 영향 많이 미치나요? 성대논술에는 얼마나 미치려나요
-
오타 ㅈㅅ
-
(예비고3,07년생) 아직도 정하지 못한 탐구과목 + 수능공부법... 조언 구해요 1
안녕하세요, 예비고3 2007년생 학생입니다. 1년 풀커리 시작하기 전에 탐구과목...
-
잘 모르는데 결국에 엔비디아가 다 해쳐먹는거 아님? 아니면 엔비디아는 ai반도체에만 집중 돼있나?
-
헐.... 안타깝다....... 근데 있다 저녁 뭐먹지?
-
뭐부터 읽지 9
노인과 바다는 반납해서 없음
-
사정상 1년동안은 학교 주변에 원룸 잡고 자취하다가 이후에는 본가 (서울)로 다시...
-
하 ㅆ2발 4
경시대회 문제 거의 다 풀었는데 마지막에 시간부족으로 대입하면 바로 답 구해지는대...
-
연논 재시험?? 18
올해 연논 시험 전 만들었던 연논 대비 모의고사(5회 분량) 필요하신 분 있으시면...
-
산책가자 4
이거 너한테만 보이는 거야
-
확통 84 1
백분위 몇 보시나요?
-
그냥 그렇다구요
-
현실은 차갑네
-
한 번도 수학이 2등급 밑으로 떨어진 적 없는데 요번 수능에서 처음으로 3 받이보게...
-
전남친 잡고싶은데 19
저는 강원도로 갈 것 같고(진학) 전남친은 부산내려가있는데 (원래 부산사람이고...
-
국영수 최대로 끌어올릴자신 없으면 과탐하고 표점이득 보는게 낫나요? 예비고3...
-
걍 눈 닫고 귀 닫고 할거 하고 살면 딱히 열받는 일도 없어지는 듯
-
보통 애인 있는거죠? 평소에 손에 장신구 안 끼던 사람인데..
-
짜증났는데ㅔ 오늘은 제가 부르겠습니다 근데 그분은 새벽 1시에 부르셨어요…
-
인치작고 가볍고 가성비 굿인걸루
-
츠나기아와세테 에가이테유쿠 아나타가 쿠레타 데아이토 와카레모
-
ㅈㄱㄴ..
-
연대 0
1차 붙은사람 빼고 260명인거임 아님1,2차 합집합이 520명인거임?
-
보통 실력이 2,3섞여있어야함?
-
ㅈㄱㄴ
-
올영에서 3마넌 질렀다
-
차출..이라보단 "선생님 저희 로스쿨 입시도 하게 됬는데 좀 와주십쇼"겠죠
-
복잡하거나 되게 어려운 문장 나오면 종종 해석이 이상하게 엇나가는 느낌이...
-
축제 나간횟수 4
중딩때 1번 고딩때 3번
-
초딩때 할아버지집에서 tv로 봤었는데... 제목이 기억이 안나요
-
그동안 공정성훼손!!!!! 무효!!!!! 외치던 그들 재시험 치면 기존 합격자들이...
-
작년에 다닌 독재만 5군데입니다.. 정확하게말하면 공부환경에 빨리 질리는거같아요...
-
흠 1
경제를 하지 말았어야 했다 수학 29번 실수+경제 망 2연타를 맞으니까 얼얼하네
-
???:리트도 반응해라!
-
국어 수학이 낮고 탐구가 높아 재수를 했더니 반대로 탐구가 말썽입니다...ㅎㅎ 메가...
-
하 내 자유시간...앞으로 하루에 4시간은 공부해야할듯
-
우왕 6
-
2과목 꿀이다 이러는애들 대부분 착각일 가능성이높음? 1과목 비교 이딴거없이 그냥 2과목 자체로만
워낙 테크니컬해서 모두가 할 수 있어야 하는 건 아닙니다 ㅋㅋ
ㄹㅇㅋㅋ
세번째에서 네번째 넘어갈 때 오타난 것 같네용
아 잘못 봤나
2x 치환하면 같은 모양 나오져 그게 핵심
한양대 왈 : 감점.
갑자기 궁금한건데 저 극한은 존재하니까 저렇게 두는게 되는데 안 존재하는 극한을 저렇게 k로 임의로 두고 풀면 어떻게 돼요? 모순 생기나
네 미적분학에서 배우시게 될 겁니다.
수렴을 가정하는 건 항상 불가하죠. 문제에서 주어지면 모를까.
수험생의 99.5%는 몰라도 될만한 내용이네요. 지적호기심만 해결하고 가세요~
뇌를 수학에 절이다보면... 될걸요 아마... 전 그러던데..
형 사랑해요
남친 자리가 비긴 했는데.
2018 한양대 수리논술 마지막 문제에서 극한계산할 때에 원래 적분판정법으로 해줘야하는 부분이 있는데, 합격자 중 그 부분 증명한 사람 한 명도 못봄ㅋㅋㅋㅋ 다들 시간 없어서 '그냥 0' 하고 넘어갔고, 실제로도 잘 합격했구요 ㅋㅋㅋ
저 극한 계산이 문제에서 차지하는 비중이 적다면, 감점이 없거나 매우 적은 감점 정도만 받을 겁니다.
시험 땐 잊도록,,
테일러 급수에서 얻어낸 부등식은 ㅆㄱㄴ
증명하라고 내겠죠?ㅋㅋ
저는 평균값정리를 사랑하기 때문에 이렇게 풀었습니다. 원래는 좌극한도 보여야하는데 귀찮아서 극한값 존재한다고 가정하고 우극한만..
아 마지막에 c를 넣어야하는데 습관적으로 x를 썼네요..쩝
c->0+ 이므로
다음 줄 등식이 항상 성립할까요? 만약 성립한다면, 미분가능한 함수의 도함수는 항상 연속이어야 할 겁니다.
어느 부분에서 오류가 있는지 알려주실 수 있을까요?
같은 논리로 미가 y=f(t)에 대하여 구간 [a,x]에서 평균값 정리를 써보신 후, x를 a+로 보내보세요.
똑같이 미가 y=f(t)에 대하여 구간 [x,a]에서 평균값 정리를 써보신 후, x를 a-로 보내보세요.
두 방식에서 좌변은 f'(a)를 의미할 겁니다. 미가함수니까요. 우변은 c->a f'(c) 를 의미하겠죠? 그러면, 이 등식은 f'(x)는 연속함수다.를 의미하게 되겠네요?
그런데 제일 대표적인 반례, x^2 sin(1/x)가 있죠. x=0에서 미분가능하나 그 도함수는 불연속인. 이 반례가 저 윗 과정으론 설명이 안되겠네요.
물론 이 부분에서 '어, 저건 틀렸어.'를 알아채기는 어려운 과정이 맞습니다. 극한을 엄밀히 정의하지 않아서이고, 고등교육과정에선 '안틀리면 이상한'수준의 논리이니 괘념치말기 바랍니다 ㅎㅎ
아 이렇게 나오면 다르부정리인가 그것때문에 바로 연속이 나오는군요..
아뇽 다르부 정리는 리미트가 먼저 존재를 하고나서 따지는 거라서...ㅎㅎㅎ 큰 상관은 없구요.
좀 더 말씀드리면, c는 구간의 양 끝 a, x에 대한 함수입니다. (물론 f 의 영향도 받죠.) x->a+로 간다고 c가 a+로 순수히 가리라는 보장이 없습니다. 가까워 지는건 맞겠지만, f가 안정해지면 c는 a와 x를 무작위로 움직이는 느낌이죠.
딱 이 정도로 제가 무슨 말하는지 이해가 돼셨다면, 수학과 강추합니다. 그럼 20000
c가 순수하게 가지 않고 무작위로 움직일 수 있다는 건 평소에도 생각하고 있었는데, 그럼에도 불구하고 x가 a+로 한없이 다가가면 c도 그럴 거라고 생각했는데..어렵네요. 그럼 이 논리는 도함수가 연속이라는 전제가 깔려있으면 써도 문제없나요?
네 맞구요, 아래 댓글은 여전히 아니죠 ㅎㅎㅎ 정확히는, '틀렸으니 저러면 안된다.'가 아니고 '안배워서 모른다.' 입니다~
c의 불순함을 알다니, 수학이해도가 꽤 높은 학생인 것 같습니다. 훌륭합니다~
그럼 다음부터는 도함수가 연속인지 확인하고 써야겠네요. 답변해주셔서 감사합니다. 그리고 칭찬해주신 것도 매우 감사합니다..ㅎㅎㅎ
네 ㅎㅎ
아, 그리고 수학적으로는 틀렸을지라도 순수 고교과정 내에서만 따지면 오류가 없는지도 궁금합니다,,
인수정리에 의한 식정리를 쓰는건 어떤가요?
어디 논술예제라고쳤을때
G(x) = e^x -x -1 으로 놓으면 극한값이 존재하기위해선 G(x)는 x^2를 인수로 가져야만 하므로 x^2g(x)=G(x) 로 놓고 g(0)를 구하기위해 양 식을 미분때리면 2xg(x)+x^2g'(x)=e^x-1 인데
x가 0이 아닐때 2x로 나눠주고 lim x->0 을 양 식에 취해주면 1/2가 나온다
이렇게 작성한다면...
추가 첨언해주실수있으실까요??
x->0 ln(1+x)/x=1 이라고 해서 ln(1+x)가 x를 인수로 갖는다는 표현은 안씁니다.
인수는 다항함수에서만 쓰는 용어입니다. 고등학교에선요~
사실상 x->0일 때 ln(1+x)~=x가 되는데, 이는 수능용 근사에 해당할 뿐 저 사실 갖고 ln(1+x)는 x인수를 갖는다고 얘기할 수 없어요. 100% 점수 못받습니다.
아하. ''다항함수'' 에서만 쓰는거군요 .. 180621 문제나 뭐 다른 논술문제에서 비슷하게 접근하는걸 토대로 생각해봤는데.. 걔네들은 다항함수라는 조건이 붙어있었군요..
주의해야겠네요
선생님 풀이처럼 lim x->0 e^x-1/ x =1 이 기본 정의에서부터 시작해서
문제의 꼴을 맞춰가는 식으로 조합해나가는 고런 마인드를 새로 적립해야겠네요
f(x+y)=f(x)f(y) 이런애들 함수 식 구할 때도 (편미분 사용 안하고)
리미트 h->0 f(x+h)-f(x)/h =f'(x) 여기서부터
시작해서 형태꼴을 맞춰나가듯이요
네, 근데 이 문제는 너무 특이, 발상적인 케이스라 구경에 그치셔도 충분합니다.
i) f(x)/g(x)에서, 분모와 분자가 0으로 수렴할 때 로피탈의 정리의 증명은 고교 수준에서 어렵지 않습니다. 이 문제의 경우, 엄밀히 말하자면 감점받을 일이 없습니다.
ii) x를 sqrt(t)로 치환하고 미분꼴로 바꿔도 되네요. 좌극한과 우극한을 모두 구해야 합니다.
번외: 도쿄대학 2003 후기에서, x > 0면 x - x^3/3! < sin x < x - x^3/3! + x^5/5!임을 증명하는 문제가 있습니다. 고교 교육과정으로 간단히 증명할 수 있으며, 테일러 급수를 이렇게 간접적으로 쓸 수 있습니다.
하지 말라고 한 적 없습니다.
할거면 증명해서 하면 되는데, 그 방법(로피탈 증명 후 적용하여 풀기)보다 그렇지 않은 방법 (=교과과정내로만 풀기)이 더 나은 문제들만 나오니까 비추하는 것이죠.
수험생이시라면 제 조언대로 하시는게 좋을 겁니다. 제 옛날 모습을 보는 것 같아요.
대한민국 입시에서 성공하려면, 그들 입맛에 맞춰서 공부해줘야합니다. 슬픈 현실이지만.
교수들은 감안하고 내니까요. 제가 교수보다 많이 안다는 것은 위험한 기대입니다. 교과 과정으로 풀어야지요.
정확합니다
수능에서도 선행 과정을 쓰는 게 의미가 없고 모든 문제가 교과 과정에서 풀리는데 논술은 오죽할까요. 다만 저는 흥미의 차원에서 "선행 과정의 개념" 을 쓸 수 있음을 보인 겁니다. 그게 재밌으니까요.
위에 말한 "엄밀히 말하자면"은, 다음과 같은 뜻이겠죠: 가능하나, 대부분의 경우 비실용적이다.