저번에 올렷던 사차함수 해설 ㅋㅋ
이해 안되면 댓글좀 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
논술 안내 문자 2
대체 왜 본인에게만 안보내고 부모님한테도 문자를 보내는건가요.. 원래 모든 학교가 다 그런가요?
-
타이레놀 먹고 전기장판에 몸 녹이니까 몸살 싹 나음
-
뻥임뇨
-
공통틀 96은 97프로에 표점 135정도 뜨려나
-
가재맨 화이팅 2
헉
-
기균 정시로 탐구 1+1하면 가망없나요? 1+2해도 충분할까요..?
-
제목어그로ㅈㅅ 고2 최근에 친 학평 수학 3컷입니다 아마 평가원으로 치면 낮4-5쯤...
-
셤기간만 되면 6
체스와 오르비가 재밌다 오랜생각이다
-
https://m.blog.naver.com/kcmjungmin36/223663961478
-
컨설팅 5
4등급도 의미잇나요.. 우울하다
-
너무 추워요 4
아직 11월인데
-
사실이야?
-
티끌 모아 태산 6
산증인
-
올해 기하 2컷이 80인게 말이 안되는디..
-
연세대학교 추가논술 (2차논술) 현 고1들이 걱정할필요없는이유 2
https://m.blog.naver.com/kcmjungmin36/223677192...
-
남자임
-
수능 성적표 0
작년에 n수생들은 현역보다 이틀정도 일찍 볼 수 있었던걸로 기억하는데 올해는 다같이 12/6인가요?
-
모래여우 사막여우 붉은여우 .. . . . . . 자리많아요!!! 이리로오세오!!!
-
어떻게됨? 기하는 그렇게 나왔다가 손해봤던거같은데
-
1월에 진짜 가게되면 10만덕 뿌립니다 갑자기 행복회로가 팽팽 돌아가네
-
화투 왤케 높아 0
억울핑
-
10시간쯤 자고 밥 한끼정도 먹고 한 8시간정도 폰or컴하다가 또 다시 10시간쯤...
-
내 최종 목표 14
남자들 홀리는 보추되기
-
치킨 뭐먹지 추천 ㄲ 22
간택당하면 500덕을
-
그녀들이 되
-
닉변 1일차 2
지하철에서 시선을 느꼈다 어떡할까
-
과탐 선택자는 1,2등급이 아니라면 탈출해라. 3등급 이하가 사탐런 하는 건...
-
할만한가요 최소 20학점 시간표 다 짜여서 나오던데..
-
의떨아 ㅋㅋ 7
너한테만 알람가겠네 팔로워 보니까 ㅋㅋ 일방적인 딜교환 ㄱㅇㄷ이노 ㅋㅋㅋ
-
국어노베? 0
지금까지 국어학원도안다니고 마더텅자이도 안풀고 인강도안듣고 모의고사를 그냥 대충...
-
근데 26부턴 재미삼아 볼듯
-
오늘도 적백이를 꿈꾼다
-
재수하면 바~로 물리 버리고 사탐할려는데 뭐가 제일 좋나요
-
보통 몇 점까지 2뜨나요? 1컷이랑 2컷 사이 점수차가 보통 몇점 정도 나는지 궁금하네요
-
크고 아름다워 8
입안이 가득 채워지는 맛이에욤
-
단한번의 별빛을 내눈에담았어
-
가끔 신나는 노래가 듣기싫을때가있음... 그렇다고 발라드같은것도 듣기싫고... 진짜...
-
메이드복? 2
어지럽누
-
그걸 그냥 무시 안하고 받아들인 교육부가 문제지
-
수시로 대학 붙은 수험생입니다. s높공 목표로 반수생각하고있고 올해수능성적은 91...
-
충격먹음뇨 나 ㄹㅇ ㅈ된듯뇨
-
미적패의 날을 볼줄이야
-
뉴런vs시발점 0
이번수능 14 15 20 21 22 틀렸고 재수 예정입니다 수1은 작년에 실전개념...
-
풀세트가 2만원 짜리인 시험지라곤 믿겨지지 않을정도로 문제 퀄리티가 조음
-
저만나러와서
-
6평 언미영물생 22453 9평 언미영사생 32344 수능 언미영사생 메가기준...
-
언매 91 생명 44 가망 없을거 같은대
-
집에 감기약이 있던가
-
돈으로 못사는것 6
경력 사랑 지위 권력 이것들 제외하면 돈은 무적아님? 저는 돈이 세상에서 가장 좋다고 생각함
가장 기본적인걸 설명 안했는데
h(k)가 불연속이 되는 점의 수는 원점에서 그을수있는 접선의 숫자랑 동일해요 ..
(접선에서 위아래로 살짝만 돌려보면 미분가능한 점의수가 바뀌는걸 알수있습니다
즉, 원점에서 그은 접선의 기울기가 h(k)가 불연속인 k값이 되죠. )
그리고 h(k)가 양수에서만 3개 불연속이니까
원점에서 그은 접선의 기울기는 셋다 양수여야하고 기울기가 음수인 접선은 존재해선 안되요
태클걸어서 죄송하지만..ㅎㅎ
'h(k)가 불연속이 되는 점의 수 = 원점에서 그을 수 있는 접선의 숫자' 는 엄밀하지 못한 말이고요,
4차 이하 다항식의 경우에는
'h(k)가 불연속이 되는 점의 수 = 원점에서 그을 수 있는 접선 중 접점에서 짝수중근을 갖는 것의 갯수' 라고 해야 맞을 것 같아요.
(즉, 변곡점에서의 접선이 원점을 지나는 경우라면 h(k)가 불연속이 되지 않을 수도 있을테니까요.)
일반적으로 5차 이상 다항식 혹은 일반적인 미분가능 함수의 그래프에서는 이것조차도 참이 아닐 것 같아요. 접선이 있음에도 h(k)값이 변하지 않고 연속이 되는 경우도 있을 수 있는 거 같아요~
아무튼 이 문제의 경우에는 이렇게 해도 다 참인 것 같아요~ 풀이 꼼꼼히 잘 써주셔서 고맙고요!
뭔가 되게 정리해서 말하기 힘든개념이네여 ..
제가 내놓고 제가 모르다니 ㅠ
ㅎㅎ 겸손하시다는.. 다항함수 경우만 봐도, 차수가 올라가면 함수가 위로 올라갔다 내려갔다 여러번 할 수 있으니까, 동일한 한 (원점 지나는) 직선에 함수가 여러 번 접할 수 있는데, 한 쪽에서는 위로 볼록하면서 접하고, 다른 쪽에서는 아래로 볼록하면서 접하고 이런 식일 수 있어서 그런 거 같아요~ 제가 봐도 정리해서 말하기 참 힘든 거 같아요ㅎㅎ
친절한 풀이 감사합니다. 많은 도움 되었어요^^
네넴 도움 되셨다니 ㅎ
다행이네요
오류있는듯..? n이상수란말이주어져야할듯요.. 제 풀이가 잘못된건지..ㅎ 오른쪽 극소가 더 큰 w자 그리고 첫번째 증가구간 밑과 왼쪽극소값 사이에 원점을 두면 오른쪽극소 주위에서 접할때 기울기 m 왼쪽 극소주위에서 접할때 기울기 16ㄱ기울기가 무한대로 갈때 미분불가능점 2개에서 1개로 변화.. 즉 이렇게 그려도 문제조건에 합당한 그래프발견가능.. 하지만 답은 구할 수 없음 ㅋㅋ
아 참고로 원점은 오른쪽극소보다 아래요
님이 올리신 해설도 기울기 무한대에서 불연속이네요..
n은 당연히 상수라고 생각하고 있었는데 ㅎ
그리고 기울기 무한대일땐 따질 필요 없을듯 합니다
점근선 개념이랑 비슷하다고 생각하는데 ;;
왜나면 h(k)가 k를 정의역으로 하는 함수이고 , 기울기가 무한대일땐 k가 무한대로 간단건데
그건 사실 불연속이라고도 하기 애매한 개념이죠 .. 점근선과 비슷