행렬 진위 판정 문제
A B 는 이차정사각행렬 이며 (AB)의 제곱 = A 의제곱곱하기B의 제곱 이고 A의 역행렬이 존재할때
B*A 역행렬= A역행렬*B 이다
좀 풀어주세여 ~ 맞으면 맞고 틀리면 왜 틀린지 이유랑 풀이과정도 적어주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 답답해서 1
'메모장 켜라' 실천 중임 쓰고 지울 것 쓰는 중인데 아 후련하다 진짜 진즉 이렇게라도 할걸
-
사람들이 적절히 못 볼만한 타이밍이 꾸준히 연구해서 칼삭하기
-
거금받고 의사면허없이 불치병 치료하면 불법임? 이걸 의료행위라고 할수있나
-
가채점 46 0
가채점 숫자 46개 있길래 하나 지우고 매겼는데 갑자기 넘 불안함요ㅠㅠ
-
화1탈출은 지능순
-
사실 너무 부러웟서요
-
9모 성적 11112 (지구 생명) 10모 성적 12312 (지구 생명) 입니다....
-
문득 궁금해짐 꽤 유서 깊은 전통일 거 같은데
-
남고 다니니까 5
멀쩡한 사진이 중딩 때밖에 없음
-
여자들은 보통 같은여자를 무시하거나 그러진 아늘것같은데. . . ㅠㅠ
-
일단나부터ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
각도의 중요성? 1
존잘 이병건에겐 부질없는 짓임
-
게이력 ㅁㅌㅊ?
-
뀨뀨 13
뀨우
-
뭣 4
6시간 후 기상이라고? 얼른자야지..
-
미미미누가되... 어라
-
어디가 더 심하게 괴롭힌다생각함? 여자왕따? 남자왕따?
-
시발
-
같이 긁었는데 여드름이 시원하게 긁혀오면 기분째짐
-
좇목질이 대인관계의 끝이라고생각 모든 친목질은 좇목질인데 상대가 그걸 수용할수있는지...
-
전 실물파임 6
사진으론 못 담음 그래서 ㅇㅈ을 못하는 거임 그런 거임 ㅇㅇ
-
꽈배기먹고싶다 2
설탕에굴려서
-
내가 생각하던 거랑 거의 똑같이 가나다군 잡아주네... 다군은 좀 달랐지만 당연히...
-
두시됏으니잠 16
빠빠뇨
-
근데 팔로우분들 5
인증 왜하시지 원래 하시던 분들이 아니었던거같은데
-
예나 6
잘자..
-
학종 열심히 챙기고 선택과목 물화생. 전체 내신 1.7정도 나오는데 저번 중간고사...
-
흔들어라 흔들어라
-
ㅇㅈ 8
재밌긴했음
-
수능끝났고 하고싶었음
-
빨리 내 옯스타 디엠으로 인증한 사진 보내놔라. 이상.
-
ㅇㅈ 2
-
ㅇ....ㅈ 10
이사진 5조 5억년만에 꺼내는느낌
-
너무 많이 한듯? ㅇㅈ?
-
이게머노
-
아니 왜 나만 5
은따당하고 잇엇뇨
-
ㅇㅈ 6
처음으로 봤는데 존잘이라서 기분 좋네여
-
걍 죽을게
-
왼쪽눈 충혈됨
-
네
-
1시 54분이다 빨리 이불덮고 들어가자라 나는 좀 더 있을게
-
잔다 4
-
감상적이게 되네 좀
-
ㅇㅈ 23
다섯번째 재탕이지만 그냥 보십쇼……….
-
시간의흐름이
-
이러면 여자드리 조아하겠지
-
잔다 4
피곤해
-
오랜만에 뻘글 ㅈㄴ 썼네
A약분해보면 (AB-BA)B=O ----> AB=BA ?? 를 진위판정하는 문제와 동치입니다.
이는 거짓입니다. B=(0 1 // 0 0), A=(1 0 // 0 0) 생각해보시면 됩니다.
이미 님 말씀대로 A 의 역행렬은 존재해요
사실 학교에서 처음풀때 (AB)의 제곱 = A 의제곱곱하기B의 제곱 -->는 AB=BA
라고 생각하고 풀었고 제 친구들도 그렇게 풀어서 답이 잘못된줄 알았는데,
이게 syzy님이 동치라고 제시한걸로 이해하니까 정말 쉽게 이해되었네요
고마워요 ~~
A =( 0 1 / 1 0 ) B= (1 0 / 1 0) 반례요 틀렸어용.
문제를 보자마자 반례가 떠오르는 경지까진 안가서 그런데,..
반례 말고 다른 방법은 없나요?
더군다나 시험에선 떨려서
반례로 풀어야지 조차도 생각이 안나는데ㅠㅠ
syzy님 반례는 A가 역행렬이 없어서 안될것같아요.
아 그러네요
ㅋㅋㅋㅋㅋ참인거같은데용 첫번째 조건 때문에 교환법칙이 성립한다고 할때 그 문제에 양쪽에 A를곱하면 A곱B곱A역행렬=B이고 교환법칙이 성립하니까 A랑B랑
자리바꾸면 B곱A곱A역행렬이니까 B만 남으므로 성립
제바류님도 제가 처음풀때 한 실수를 했네요 ㅠㅠ
위의 첫번째 조건은 교환법칙이 성립한다는게 아니에요 반례가 있죠
그리고 이것을 전제로 풀어서 답이 맞다고 나온거니까
잘못 푼거에요
참고로 (AB)의 제곱 = A 의제곱곱하기B의 제곱 -->AB=BA 이다
의 반례는 A= (1 0/ 00 ) B=( 0 0 / 1 0)
이에요
(AB-BA)B=O --> AB-BA=O ? 가 참일지 거짓일지 따지는 것인데,
일반적으로 CD=O 이라고 해서 C=O는 아니니까 아마 위 명제도 거짓이 아닐까 일단 의심을 합니다.
그러면 (AB-BA)B=O 이고, AB-BA=O는 아닌 예를 찾기 위해, B를 최대한 O에 가까운 걸로 놓아봅니다. (그래야 좀 더 유리하니까..)
B = (0 1 // 0 0)으로 놓고, A = (a b // c d) 로 두시면
AB-BA = (-c a-d // 0 c) 이고
(AB-BA)B = (0 -c // 0 0) 인 것을 금방 계산할 수 있습니다.
따라서, c=0으로 두시면서 a-d =0이 아니게 하면 됩니다. 즉,
A = (a b // 0 d) , B = (0 1 // 0 0)형태면 반례입니다. (단, A의 역행렬이 존재한다는 조건 때문에, a,d 둘 다 0 이 안 되는 범위에서 고르면 되겠군요.)
대단하네요 이런생각을!!! ㅋㅋㅋ
제가 본것중 젤 논리적인 반례 찾기인듯 ㅋㅋ
감사합니다~~
ㅎㅎ 고마워요. 위에 막 실수 해놓고 그래서 죄송해요~