미분고수만 헬프
f(x)는 x=0 일때는 0 그외에는 x2sinx-1
일때 x=0 에서 미분가능성을 조사해라
이런 문제인데요 사실 극한값계산하면 미분가능하다는건 알겠는데요 실제로
x2sinx-1 이 함수를 미분해서 x=0 떄려넣으면 값이 안나와요 왜이러져
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 시@@바@ㄹ 17
-
아직 약할때 새터를 가야지 개강한데 새터를 왜감
-
당근에서 싸게 올라와서요
-
약대 중에서 중간 이상은 하나? 에리카 라서 위치가 ㅈ이긴 한데 꿀약이라 소문나있길래 궁금함
-
대학 드가고 0
오르비하면 또 다른 세상일듯 빨리 졸업하고프다
-
진짜네
-
뫚퐐구홤 6
ㅇㅇ
-
특학,자대 관련해서 몇가지 여쭤보고 싶습니다 ㅠ 댓글달아주시면 감사하겠습니다
-
구랍니다
-
서울 올라가는데 2
길에는 눈 다 녹아서 ㄱㅊ은듯
-
https://humanbenchmark.com 단어기억 저 이기면 천덕 드림,,...
-
아오 이 돼지새@끼 13
몇분만에 이걸 다 쳐먹네
-
수학 과외 구합니다
-
강대 기숙 의대관 입소 할 예정인데 꿀팁들 있으면 알려주세요!!!
-
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
페제로 다 봤다 4
-
ㄹㅇ 십 사기
-
닉넴 바꿨음뇨 10
자신감이 큰 남자라는 의미임뇨
-
지구의 중력장 10
표준 중력과 중력 이상
-
영어 강의 3
필순가? 평가원 모고 낮1 나오는데 그읽그풀로 풀어서 좀 공부해야할거 같긴 한데...
-
현우진 커리타려는데 뉴런 수1~미적까지 다듣는게 낫나요? 3
18수능보고 수능 쳐다도안보다가 이번에 다시 시작하는데 뉴런 책 배송도 너무...
-
시발
-
작수 언미생지 23132구요. 성적상으로는 무조건 사탐런이 유리하다는거 알구요....
-
집에 얼마 있어야 한다고 봄뇨
-
수업 어땠나요? 난이도는 어느정도임요?
-
과외생이 존예/존잘이면 좋음?
-
과외글에 8
공통수학 미적분 기하 수1 수2만 가능하다고 그렇게 써놨는데 확통은 가능하신가요?...
-
나한테 피해는 안 주긴 하는데 아..
-
자 이제 덕코용돈 주세요
-
디시에 물어봐도 아무도모름ㅜ 이전회차 복영도 구매되는지 물어보고싶은데 시대...
-
다음 닉 7
20글자
-
이거 신고 못하나요
-
의대 휴학하니까 0
좋은 과외쌤 찾기는 쉬워진듯 도움 많이 받음
-
백분위 100 ㄷㄱㅈ
-
오늘 나랑 썰전함 개재밌음 사교육 vs 공교육
-
김과외 쓰나요? 24수 96 25수 100인데 시급 얼마가 적당할까요 조언부탁드립니다
-
쫄튀했는데 궁금
-
그런 놈이 여길 왜 다시 기어들어와? 저 가면 쓴 놈들이 456억을 안 줬다구요...
-
첫 알바를 시작할 경북대 25학번 신입생 여러분들께 전하는 알바 팁 안녕하세요,...
-
대학생 가방 0
편도로 1시간 반 정도 걸리는 통학 예정
-
반동이다!! 전위대! 전위대!
-
오르비에 쭉쭉단 많은줄 알았네요
-
현생보다 0
오르비가 더 재밋음 인생 잘못 산듯함
-
신촌이구요 주말마다 응 예..
-
5대5라는 게 사실인가...
-
이상하게 옷은 사도사도 부족한 거 같습니다 자주 입는 기본템이면 같은 옷 두 벌...
미가능성
우미분 좌미분 함수값비교ㄱㄱ
글고 미가능조건없으면아랫분말처럼
함부로미분햇을때 에러발생
도함수의그래프가 연속이라는보장없지않나요
x2sinx가 2xsinx인가요?? 함수가 2xsinx-1이면 x=0일때 불연속인데 미분 불가;;
도함수 f'(x)가 연속인 경우에 f'(a)를 구하는 방법으로,
"도함수 구해서 x = a 대입 하면 된다"고
설명되어 있는 교과서나 정석 같은 개념서들이 많고,
또한 실제로 그렇게 풀어서 100 중에 99는 이상이 없는데,
위와 같이, 도함수가 불.연.속.인 지점에서도
마찬가지의 논리로 접근하려고 해서 그렇습니다.
특정 점에서 미분이 가능하다는 말은,
1. 그 점에서 연속이고,
2. 좌우미분계수가 같다는 말이지,
도함수 차원에서 좌극한과 도함수의 우극한이 같되,
거기다 도함숫값까지 같아란 얘기는 아니니까요..
도함수 f'(x)가 연속인 경우에 f'(a)를 구하는 방법으로,
"도함수 구해서 x = a 대입 하면 된다"는 맞는 이야기지요. (존재한다면 대입하면 되고, 존재 안 하면 대입해봐야 소용 없고요.)
아마,
도함수 f'(x)가 연속인 경우(단, x=a에서는 연속인지 모르고..)에 f'(a)를 구하는 방법으로,
"(다른 점에서 성립하는) 도함수식 구해서 x -> a 로의 극한을 구하면 된다"라고 설명하는 개념서가 있는데 이는 엄밀하게는 틀린 설명이다..
라는 말씀을 하시려는 것이지요?
이거 0에서 미분이 가능해서 미분계수가 존재하고
f(x)가 0에서 당연히 연속이지만
f'(x)는 0에서 연속이 아닌 예인데
연속확장가능한함수 라고 하네요..구글링하시길
저렇게 한 점에서의 값만 따로 준 경우에만 이런일이
생기는듯
아 그리고 y= f(x) 그래프 그려보세요
Y축에 가까워질수록 진동하면서
0에 수렴하는 기함수입니다
x=a에서 미분계수의 정의
lim(h→0){f(a+h)-f(a)}/h
극한값이 존재하면 미분가능하다고 합니다
위엣분들이 좋은 말씀 해주셨는데 구체적 계산이 없어서 조금 더 첨언하겠습니다.
먼저 x=0아닐 때 y= x^2 sin (1/x) 라는 함수를 말씀하시는 것 같은데 작성자님처럼 표기하시면 못 알아보는 사람들도 상당수 있으리라 생각됩니다.
(x=0일 땐 y=0이고요.) 아시겠지만 y' = 2x sin (1/x) - cos (1/x) 인데요, 이는x=0 아닐 때에만 참입니다. (미분의 정의에 입각하여 계산한 것이, 곧 합성함수 미분 공식 이용해서 미분한 것과 동일.)
단, x=0이라면, y' = lim_{h->0} ( h^2 sin (1/h) - 0 ) / h = lim_{h->0} h sin (1/h) = 0 (샌드위치 정리) 입니다.
x^2 sin (1/x)를 미분해서 x=0을 넣었는데 안 맞는다는 표현 자체가 어불성설입니다. 미분해서 x=0을 대입한 것이 제가 바로 윗줄에서 한 것이고, 그렇게 하면 도함수값이 0 이 나오고요. 님이 하신 것은, x=0이 아닐 때에 한해서 유효한 도함수의 식에다가 x=0을 대입하려 한 것입니다. 만약 도함수가 연속이라면 님처럼 해도 참이겠지만 이 경우에는 도함수가 x=0에서 연속이 아니라서 그 방식이 성립하지 않게 되는 것이고요. 위에 댓글 단 분들과 같은 설명인데 풀어서 써보았습니다.