(생1)넌 이거 왜 않애???? 위계가 같은 두 조건 처리 + 관성에 대하여
안녕하새오. 도개애오.
오늘은 좀 쉬운 내용을 가져와봤어오.
현역친구들 아마 내신?기간이라 얼마나 많은 사람들이 볼진 모르갰네오.
도지 칼럼을 봐오신 분들은 아시겠지만
전 뭘 다루든 칼럼 퀄리티는 확실히 보장합니다.
믿고 읽어주새오.
1."위계가 같은 두 조건 문항"이란?
-주로 한 개체(또는 한 개체의 세포들)에 대한 정보를 "2가지"형태로 제시하고, 개체의 정보에 대한 추론을 요구하는 문항들
<대표예시>
#22수능 7번
#22 6평 19번
#21수능 10번 외 다수
2.위계가 같은 두조건 문항을 처리하는 방법
-두 조건 중 하나의 조건을, 다른 하나의 조건형태와 동일하게 재구성한다.(+헷갈린다면 생략된 부분을 직접 살려서 재구성해도 된다)
즉 "형식을 통일"한다.
아래 예시처럼 한 자료는 유전자의 유무에 다루고, 다른 자료는 특정 유전자의 상대량에 대해 다룬다면?
=>통일 가능한 자료/조건으로 형태를 변환해 줘서 관찰을 더욱 쉽게 하는것!
eg>ㄱ,ㄴ,ㄷ은 B중하나. B의 상대량 제시
이게 머 다른 세포분열 문제처럼 생략된 부분에 대한 추론이 쉽게되는 형태거나
상대량에 대한 정보만으로 자료의 형식이 통일된 문제들이면
위에서 말한 수고를 할 필요없이 머리만 굴리면 되자나오?
근대오.
저런 문제들에서 머리만 대충 굴려서 풀겠다?
능력있는 분들은 정말 그렇게 잘푸시는 분들도 계시는데
도개가 걱정하는건
현장에서 저런 문제에서 머리만 굴리다가 한번 꼬이잖아오?
그럼 멘탈이 바사삭 부서짐과 동시에 시험지의 흐름이 끊기게되고...
저런 쉬워보이는 세포분열 문제를 내가 설마 못풀까?? 하면서 발목잡혀서 시간 오지게 날려먹고...
결국 멀쩡히 풀수 있는 다른 킬러 문제 못풀고 시험끝나는거지오.
도개가 생1을 할때 정말 중요시하는거는 생1 풀이의 체계성이애오.
현장에서 완벽한 풀이를 구현하지는 못하더라도(일부 가정이 들어가더라도)
적어도 단계적으로 푸는 습관을 들여서 어떤 상황이 닥치든 당황하지 않도록 하는 게 중요하다고 생각해오.
고런 체계성을 갖추기 위한 도구, 습관중 하나로서 위 방법을 도개가 제안하는거애오.
22수능 7번을 풀면서 적용법을 자세히 설명드릴개오
3.관성에 대하여
-신유형을 대할때의 태도->여기에서 사용가능한 도구/논리가 무엇인지를 정확히 파악하여 문제를 파고들자.
신유형에서 당황타는 이유가 옛날에 푼 문제나 기출풀때 사용한 도구나 논리에 뇌가 절여져서
막 옛날에 배운 도구나 스킬들을 마구잡이로 욱여넣어서 적용하려는 친구들이 있을텐데...
진짜 이러시면 ㅈ댑니다.
해당 도구를 사용가능한 상황이 있고 아닌 상황이 있는데
그걸 정확히 구분안하고 관성에 이끌려서 막 나간다?
이거 전기톱 들고 요리하러가서 나 대파 이거로 썰어야징 ㅋㅋㅋㅋ 이거 하는거랑 똑같은 거애오.
제발 생각하고 씁시다.
<22수능 7번 해설>
+아 참고로 도개가 칼럼으로 작성하는 모든 풀이는 도개의 22수능 현장풀이애오. 괜히 선지 역추적 이런거 알려주는거 아님. 현장에서 그렇게 했기 때문에 소개하는거.
1.발문 독해의 중요성 + 최소한으로 해야할 생각하기
-도개가 오지게 강조하는거지만, 진짜 발문좀 제발 읽으새오. 아니 적어도 읽을거는 읽어주새오.
->한 개체에 대한 정보이네. Hh, Rr 상염색체 존재 확인. 독립된 두 염색체 위에 각각 있겠지. 발문 마지막보니 돌연변이 고려안한대. 돌연변이 없지. 그냥 세포라고 했으니 n과 2n 구분이 정말 중요하겠군.
->포함관계에 의해 개체는 ㄱ,ㄴ,ㄷ 염색체를 모두 갖긴 갖네. 즉 2n이면 ㄱ,ㄴ,ㄷ 다 가져야하는데 안가지는 애는 n. I,III, IV
->상인데 r에 숫자가 있는것과 없는거 둘다 존재하니 이 개체는 Rr이형접합이겠네.
요런식으로 자료를 스윽 훑으면서 풀이시작점으로 활용할 정보들을 모으는 최소한의 생각을 해주새오.
2.조건간의 종속관계/매칭대상에 대한 관찰(고인물의 시각)
-Doge가 초반에 작성한 칼럼에서 강조한 내용인데 이런 조건간의 종속관계를 살피려는 노력이 현장에서 매우 중요해오. 애초에 대부분의 생1 문제는 이런 종속관계에 의해서 답이 하나로 수렴되거든오
(생1 킬러문제의 수렴 형태에 대한 칼럼도 시간나면 써줄개오. 이거 꽤 중요한 내용인데 공개를 아직 안했어오..)
->ㄱ,ㄴ,ㄷ과 a,b,c에 대한 매칭이네. 어? a와 b는 서로 상동염색체라는 "종속관계"가 있네...? 이거 대립여부로 모순을 낼수 있으려나?
=>위계가 같은 두 조건 문항이네. DNA 상대량 정보와 염색체 유무 정보인데... 어떤 관계를 맺는거지?
(도개는 아직 여기까지는 염색체와 유전자가 일대일 대응관계가 아니다라는 생각까진 하진 못했어오. 그냥 무슨 관계가 있겠거니 하고 다음사고를 했지오)
3.관성에 젖지말자. 해당 논리를 사용가능한지 항시 검증하기!
-일단 도개는 앞에서 파악한 생각을 통해 종속관계를 통해 "적어도 n인세포에서는 상동염색체가 모두 존재할수 없다"라는 논리를 써먹을수 있다는것을 알았어오.
-그리고 당연히 해당 논리를 사용하려면 세포의 n, 2n 구분이 중요하다는것을 알고 있었구오.
=>파악한 종속관계에 의해 ㄱ,ㄴ,ㄷ안에는 상동인 a,b가 모두 존재하는데 n인 III에서 ㄱ,ㄷ 상동불가능. IV에서 ㄱ,ㄴ 상동불가능. 즉 상동이 존재하므로 ㄴ,ㄷ 상동일것이고 a,b가 이중 하나이다. ㄴ보기 맞음.
->오애? 세포II는 상동염색체를 다갖네? 2n이구나! ㄱ보기 틀림.
=>ㄷ보기를 보니 나머지 판단해야할 사항은 딱하나. Hh냐 HH냐 요거 하나내오.
->음... 근데 요걸 판단하려면 사용할수있는 정보(상수)가 더 필요할거 같아오. H,h에 대한 정보가 더 필요한데 지금 ㄱ,ㄴ,ㄷ에는 R,r에 대한 정보와 같이 섞여있어서 풀이에 사용할수 있는 정보가 없자나오?
->그럼 ㄱ,ㄴ,ㄷ중에서 H,h와 R,r에 대한 정보를 구분해줘야겠내오. 그럼 당연히 종속관계를 맺는 우측의 상대량 정보를 활용하여 구분을 해야겠내오? 그럼 형식통일을 해야겠내오!
4.조건간의 위계 통일하기
-도개는 처음에 아 상대량 정보를 염색체의 유무 정보로 옮겨서 처리하면 되려나? 이 생각을 했어오.
-근데 말이지오? 앞에서 여러번 강조했듯이 정말 이 논리를 써도 되는지 한번 검증해보라고 했지오?
->도개도 몇초간 머리로 검증을 해봤어오. 형식을 통일시키려면 두 자료가 서로 변환가능한 일대일 대응 형태여야하는데...
=>근데 생각해보니 동형접합이면 유전자와 염색체가 항상 일대일 대응은 아니잖아?? (동형접합 HH일때, H라고해서 무조건 어떤 염색체 위에 있다라고 할수 없지..)
검증 tip: 예시를 짧게 머릿속으로 그려보새오->dd여도, 염색체 a에 있는 유전자 d랑, 염색체 b에 있는 유전자 d는 엄연히 다른거잖아!
->고런데 이형접합이면 염색체와 유전자가 일대일 대응이네?
=>결국 이형접합유전자 상대량 자료를 염색체 유무의 형태로 통일시킬때 조금더 의미를 가질수 있겠네!
->마침 초반에 Rr이 이형접합임을 찾아놨으므로, 얘를 염색체 유무 형태로 조건을 통일시켜봐오.
+생략된 정보 추론을 머리로 하든, 쓰든 풀때 한번씩 고려해주는게 좋아오. 매칭후보군이 일부 생략되어잇을때 말이지오.
와! 유전자 R,r에 대한 상대량 정보를 "R,r이 있는 염색체의 유무"로 정보를 전환했내오! 두 자료의 정보가 통일되었으니 이제 매칭을 시도해서 새로운 정보를 얻어낼수 있겠내오.
->매칭 후보군 ㄱ,ㄴ,ㄷ중에 R이나 r이 있는 염색체가 무조건 존재하므로, OX 패턴이 같은게 무조건 ㄱ,ㄴ,ㄷ에 존재해야해오. 염색체 set은 앞에서 상동 찾은거처럼 ㄱ/ㄴ,ㄷ으로 나눌수 있어오. 그런데 아래 표기한거처럼 세포 III과 IV의 ㄱ의 유무(OX 패턴)에 의해 R이나 r이 있는 염색체모두 ㄱ이 될수 없내오. 고로 ㄴ,ㄷ이 R과 r이 있는 염색체내오. R이 있는애가 ㄷ, r이 있는애가 ㄴ.
5.마무리
-어우 이제 좀 상수들이 많이 확정되면서 H와 h에 대한 정보를 확실히 구분해 냈내오. 염색체 ㄱ이 H나 h가 있는 염색체겠지오?
-케이스는 2C1이고, 모순이 내기까지의 호흡이 그리 길지 않을것 같으므로 HH냐, Hh냐로 가정하여 풀이해도 될거 같아오.
=>Hh라면...? 이형접합이내오! H,h의 상대량 정보를 형식통일해도 되는 상황이므로 해보면 O?O?이거나 X?X?여야하는데 ㄱ과 일치하는것이 없으므로 모순. HH다! ㄷ틀림!
<3줄요약>
1.무지성으로 배운거 쓰려고 하지말자. 쓸수 있는 상황인지 확인해라
2.위계가같은 두조건->형식 통일하기
3.호흡이 짧고 경우의수가 적다면 귀류를 사용해봐도 좋다!
좋아오와 팔로우를 하면 도개가 솔로 크리스마스를 보낼 확률이 올라갑니다(?)
아 구리고
과외문의는 쪽지로 언제든지 해주셔도 대오!
12월 말부터 진행하는거 몇개 있어서 열심히 준비하고 있내오…(덕분에 칼럼도 많이 뽑을수 있게되엇어오 :) )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
부산사는 학생입니다.... 부산에선 부산대 기계가 매우 유명하고 취업도 잘되는걸로...
-
컨디션관리를조짐 0
불닭 먹지말걸
-
제가 예비고2라서 겨울방학때 시발점 수1을 들으려는데 2022개정으로 듣는게...
-
이딴 걸 돈받고 팔아도 되냐? 진심 개쓰레기임 답 논거도 확실하지 않고 지문 경향도 틀딱스럽고
-
공부하기싫다 0
ㄹㅇ 하
-
트럼프 “美 조선업, 한국의 협력 필요”... 尹 대통령과 통화 0
尹 “위대한 미국 이끌길 기원” 축하 트럼프 “韓 세계적인 군함 건조 능력 보유”...
-
트럼프 “美조선업, 한국 협력 필요”…조선株 급등[특징주] 0
[이데일리 원다연 기자] 도널드 트럼프 미국 대통령 당선인이 조선업 분야의 협력을...
-
시즌3풀면서 감탄사연발하는중 내가 이런것좀 내주면 안되나 생각하던거 다 나와서 ㄹㅇ만족 근
-
하 0
배아파
-
원점수 계산하지말고 오답만 하기 틀린 개수도 확인만 하고 의미부여하지않기 철저히...
-
군수생 달린다 2
수학풀때 화가 존나 나네요 ** 죄솔핮니다감사합니다
-
[속보] 트럼프 "한미간 좋은 협력 관계 이어가길 기대…한국 국민에 각별한 안부" 2
후속기사가 이어집니다
-
마지막으로 남겨뒀는데 떨리네요 작년에 박살난 기억이
-
합격조회했는데 후보4네…ㅜㅜ 작년에 후보1까지 돌았던데ㅎㅎ 후보 근데 원래 몇위까지...
-
도표문제보다도 답을 확정 지을 수 없는 문제 유형이 젤 어려운듯. 평가원은 보통...
-
윤사 26명 정법 44명 한지 35명 1~2등급 따기 가장 쉬운 사탐 과목은......
-
오랜만에 작수 영어 풀었는데 듣기 5점 까이고 81 나옴 수능 때 3 제발 나와라...
-
요즘 사탐하면서 11
이런 플리만 골라 듣는데 너무 공감이 안돼서 이별하고싶어 ㅜㅡㅜ 이별한지 너무...
-
허리가 나갈거같아요 이러다 못걸어요
-
92 92 실수좀그만하자...
-
아 ㅋㅋ
-
어떻게 쓰는거지
-
화작 질문 2
4번 선지 청중의 이해도를 점검하는거라 볼 수 없는 이유가 무엇인가요??
-
설맞이 시즌2를 풀까 이로운 파이널을 풀까 이해원 시즌3를 풀까 3
하나만더풀고탐구존나팔껀데 머풀까요
-
(제2외국어 제외) 다들 화이팅
-
제발
-
하
-
작년6평비문학 푼 지 9개월정도 돼서 다시 좀 배운거 적용해볼겸 풀었는데 단어 1개...
-
정법오류 1
이거 답 4번인데 갑이 친권을 박탈했을수도 있지않암?
-
그냥 좀 찡찡대고싶어서 여기다가 하소연 좀 할게요.. 징징대는거 보기시르시면 안...
-
진짜 급합니다 1
이명학 모의고사 이거 듣기 파일 어디있어요? 찾지를 못하겠는데.. 대성에 무료로...
-
before사탐런시절인 24수능도 전부 1컷 47이 나왔다는거임..
-
팩트는 0
1주일후 과탐컷이 벌써 무섭기시작한다는거임.....
-
0회보다 1회가 더 어려운데 왜 1컷은 0회가 84 1회가 88인건지 이해할수없는
-
근데 화학은 ufc임
-
평소 빡모나 꿀모같은건 84~96 강k 스러너같은건 76~84정도 맞는데 설맞이...
-
베카리아 이런것도 나오는거 보니 꽤 잘읽힐거 같기도 한데..
-
얼굴에 젖살 많으셨던 분들 언제쯤 빠지셨나요? 말라꺵이인데 얼굴만 살이 많아서......
-
지금 재수를 하고 있는데 고1,2,3 실모,작년 수능,올해 6,9평 (학원에서...
-
최적T 0
왜 실검 3위죠 알려주실분?
-
그냥 너무 재밌어요,,
-
천안문을 해버리네... ㅎㅎ..
-
여러분들 1주일 남기고 탐구는 어떤 식으로 하고 계신가요? 0
그냥 기출 다시보고 개념 다시보고 그러나요? 실모 푸시나요? 저는 개념 책 덮고...
-
92점 14 30틀 14는 접한다고 생각했는데 대체 뭐때문이지?ㅋㅋㅋㅋ얼탱 30은...
-
수학 실모 억까 2
열심히 문제 풀고 맞춰도 1컷을 못 벗어나니 6평도 1컷 9평도 1컷 실모도 1컷...
-
푸리나 슬쩍. 어 누나야
-
야 애드라 14
이거 쿠키앤크림이랑 생초코 둘다 진짜 마싯으니까 꼭 먹어봐 지금 먹고잇는데 존맛이야 ㅜ
-
7 0
도지형아 멋져오
고마어오
도지 수능 생1은 괜찮게 봤나요…
ㅇㅈㄱ 세뇌 15번 체온문제 까인거 빼곤 다 잘 풀었어오
화이팅 도지 의대가자!
재수하면 반드시 보겠음...!!
걍 하나는 2n이겠지 생각하는거 국륜아님? 이번수능 n인지 2n인지 처음에 결정안되는거 고민도없이 2n으로 찍고 시간 save
나 그얘기 할까하다가 안함 ㅋㅋㅋㅋ
Doge다 올린 전자책에는 출제의도 역으로 파악하기라는 내용으로 적어놧엇오
애초에 하나빼고 전부 n인데 ㄱ선지에서 핵상 다르냐 까지 묻는다?
다르니까 물어봣겟지 ㅋㅋㅋㅋ 뭘 더 고민해오? ㅋㅋㅋㅋ
ㄹㅇㅋㅋ 다르니까 물어봤겠지ㅋㅋ
컨셉과 실력은 정비례 같아오
말투 중독성 있어요
행복한 크리스마스 보내시라고 좋아요는 안 눌렀어요
안눌러도 솔로크리스마스애오…ㅠ
생1 유전<<<<극복 가능한가요?
웅