[물리학2] 빗면에서의 중력끄기
맨날 비생산적인 뻘글만 쓰다가 유익할지도 모르는 글을 써보는건 처음이라 읽기 불편할수 있음
일단 포물선 운동하는 물체의 변위를 초기 속도에 의한 벡터와 중력가속도에 의한 벡터의 합으로 나타낼수 있다는 사실은 너무 유명해서 다들 알고 있을거임
흔히 중력끄기라는 스킬로 알려져있음
근데 이걸 빗면에서 운동하는 물체에는 어떻게 적용할수 있을까?
경사각이 θ인 빗면에서 등가속도 직선 운동하는 물체에 작용하는 힘은 중력과 수직항력의 합력이고 가속도 gsinθ로 운동함
따라서 빗면에서 초기 속도 v로 운동하던 물체는 '중력가속도에 의한 벡터'를 다음과 같이 나타낼수 있음.
어떻게보면 너무 당연하고 간단한 사실인데 이걸 문제에 적용시켜보도록 하자
22학년도 수능 15번
이건 사실 그냥풀어도 개쉬운 문제긴 한데 위의 사실을 적용시켜서 풀어보겠음
물체 A를 p에서, 물체 B를 q에서 동시에 발사했더니 r에 동시에 도달한 상황임. 이때 A는 r에서 최고점이니까 A의 '초기 속도에 의한 벡터'는 빗면 위의 높이가 3h인 점 s까지 그을수 있음.
근데 두 물체가 같은 시간동안 운동했으니까 '중력가속도에 의한 벡터'는 둘이 같지 않을리가 없음. 따라서 sr' 벡터가 빗면에 수직임
그림에서 3hsinθ^2=h이므로 빗면의 각도 sinθ=1/sqrt(3)을 알수있고, 식을 잘 정리하면 v=sqrt(3gh)이므로 답은 2번임
이번엔 좀 어려운 문제를 풀어보자
지금은 내려간 옆1동네 출처의 어떤 N제 문제임
일단 (가)를 먼저 그려보자
이 문제 역시 동시에 출발해서 수평면 위의 같은 점에 동시에 도달한 상황임. 그러면 A의 출발점에서 B의 '초기 속도에 의한 벡터'의 종점 P까지 이으면 그게 빗면에 수직일수밖에 없음
마찬가지로 (나)에서도 동시출발 동시도착이니까 B의 '초기 속도에 의한 벡터'의 종점 Q는 그림과 같이 되어야 함.
여기서 중요한 사실 하나를 알수 있는데 닮음비로 잘 생각해보면 '중력가속도에 의한 벡터'의 크기 비가 (가):(나)=3:1임
따라서 시간비는 sqrt3:1인것을 알수 있음
이건 말로 설명하기가 좀 어려운데.. 대충 A의 출발점을 R, B의 출발점을 S라 하고, X는 Q랑 높이가 같은 점, Q'는 Q랑 같은 연직선 위에 있는 점으로 그림과 같이 정하겠음
그러면 SQQ'랑 SPR이 닮음비가 1:3이고, QQ'=XR=1/sqrt(3)v0t임
이번엔 삼각형 QPX를 보겠음. QX=sqrt(2)/sqrt(3)v0t, PX=2/sqrt(3)v0t니까 sinθ=1/sqrt(3)임
이제 빗면의 각을 구했으니까 상황이 매우 간단해졌음. sqrt(3)v0t=2h, 1/2gt^2=h니까 식을 잘 정리하면 답은 2번임
이 문제는 예전에 썼던 풀이(https://gall.dcinside.com/mgallery/board/view/?id=physics2&no=4629)가 있긴 한데... 너무 생략을 많이 한거같아서 다시 써봄
질문할거있으면 댓글 ㄱㄱ
사실 이 내용 이미 알고있었을 분들도 많을거같긴 한데 그냥 심심해서 정리해봤어요
올해 수능에서 물2러분들 다들 좋은 결과 있으면 좋겠습니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
팡일이 홀수기출 0
홀수기출 사볼까하는데 괜찮은가요?? 해설이 자세하다길래.. 특히 감옥에서...
-
7시 시 반에 자러 7시에 인남 근데 정신이 막 말끔하거나 그렇진 않네 1시간 동안 폰해서 그런가
-
아침 뭐먹지 1
역시떡볶이?
-
대구는 아직 북구만 오나봐요..동생한테 사기꾼이라고 욕먹었어요
-
국어 피지컬 올리는데 좋겠죠 잠오는 거 꾹 참고 스카로 향하는 중 난 수시와 정시...
-
왜 자꾸 지혼자 새로고침 하냐고 개답답하네
-
얼또기의 피로 1
ㅠ
-
재수 할말 0
화작 미적 생지 32235 인서울은 가능할지….
-
꿈에 사람이 몇 명이 나온거야
-
아 기분조아 화이트 겨울
-
8시퇴근이라고...
-
얼버기 0
-
소개팅할 때 여초학과 여자들 인기 많음?
-
쉐어했는데 쉐어하는 분 구한다고 또 글 올리시네 띠용 이거 사기아닌가
-
방학때 영어 실력을 올리기위해서 공부하려고 합니다!! 션티쌤 키스타트랑 이영수쌤...
-
비문학 법·행정 지문 제재 단원별 정리 제3판.list 0
안녕하세요, 디시 수갤·빡갤에서 주로 활동하는 무명의 수능 국어 강사입니다. 지난...
-
호우 0
환전지연없이 안전한사이트입니다 삭종 이벤트도 진행중이니 한번 즐겨보세요 호우 평생주소.com
-
안녕하세요 수능 박은 06입니다 올해 수능 생1지1 했는데 (생명 백분위 87 지구...
-
그냥 전년도 자료?
-
사문 기출 4
사문 노배라 임정환 풀커리 탈건데 마더텅 같은 기출 문제집 따로 푸는게 좋나요?...
-
퇴근1시간남았다 0
시간좀 빨리가길
-
주식에 거금 100만원넣어도 운좋게 2배가 띄워도 겨우얻는건 100만원 근데...
-
제 성적으로 상향으로 지를만한 학교인가요?
-
뭔가 반수 결정했으면 저런거 가면 안될거 같은데 다들 어케하심?
-
쇼츠로 요즘 뜨던데 20년전거인데도 개꿀잼이네 몰아보는중
-
서성한 성적 받고 홍대 문과로 수시 납치 당한 사람인데요.. 반수가 정말 당연한...
-
어디가 더 좋음?
-
요즘은 전전 컴공 나와도 최소 석사는 다들 밟는 분위기입니다 학사취업은 그냥 과...
-
원래 6시간은 채워야 일어나지는데 주말엔 더자고 싶은데도 눈떠져서 5시간정도밖에...
-
10명뽑는지역인재약대논술인데 1명이빠질확률이있을지
-
솔직히 목소리바꾼다해도 말투때매 어느정도 티날수밖에 없는데 유명한만 연기하는것도...
-
1칸 2칸 스나 합격하기
-
고시류 빼면 취업은 어떻게함??
-
국민대vs세종대 2
제가 3년동안 진로는 생명으로 잡긴 했는데 부모님은 국민대를 원하시네요 어디가 좋을까요
-
그게 나이지나… 난 오히려 겉껍질만 이성이 되었지 진짜로 완전한 이성이 된 게...
-
동국대도 같이 붙으신분 있으신가여?
-
제가 좋아하는 드라마에서 이런 대사가 나와요 가끔, 아주 가끔 마시지 않았는데도...
-
하 ㅅㅈ 2
나 월요일 시험인데 내일하루종일(이제오눌) 공부해야하는데 아직도 안쳐잠 며칠째이미...
-
저는 잠에 들면 자요
-
오늘 눈온다내 7
전 눈이 좋아요
-
이제 자러감요 3
ㅂㅂ
-
새벽에 심심해서 쓰는 시대인재 8기 후기&TIP(1) 10
일단 이번 글에서는 강사 라인업 위주로 적어봄 [목동 본관 S반] 별점은...
-
뭔가 기절할것같다 피곤하진 않은데 멍하니 있다가 정신 잃을 것 같음
-
이제 머하지 2시간반동안
-
ㅈㄱㄴ
-
다 어디갓니
-
고대기준 상경 비상경 아웃풋 차이 큼?
-
업뎃을 몇번을 하는 동안 퍼센트 변화가 없네
-
보통 경로가 어떻게 되는지 알 수 있을까요....
진짜 개고임;;
현T 수업 들으심?
아니요
귀요미!귀요미!귀요미!
어이x
그는 신인가?
않입니다..
이..이게머노
몰?루
오 26됏다
와 이거 물올때 많이 했었는데..7ㅐ추 벅벅!
물올에서도 많이 쓰이는 스킬인가요?
기억을 잃었어요 엉엉
역학: 힘에 대한 학문 -> 힘 분석만 해도 반은 먹고 들어감
을 단적으로 잘 보여주시네요 잘봣습니다 ㅎㅎ
이 스킬 오랜만에 보네
물2게이야...
물2러 국민스킬이죠
올해도 물2해야될지 물1으로 빤스런할지 고민이네요...ㅋㅋ
혹시 첫번째 문제에서 3h가 갑자기 나온게 이해가 안되는데 설명 해주실 수 있나요?