20년 동안 본 수학문제 중 제일 어려운 문제 (해설)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
똥싸는중
-
작수 4등급 백분위61이엇는데 올해 화작1틀로 97점 받앗는데.. 나중에 국어과외...
-
이번수능이후로세번째임
-
얼버기 4
-
수능 몇번 치고 사교육 전향하는 사람 꽤 많음 ㄹㅇ
-
국어국어국어 1
작년강의들을까요? 내년강의 들을까요? 비독원 & 문개정 들을 예정입니다
-
오늘 동한 떳는데 불합격이면 최저못맞췃으면 무조건 떨어지는거인가요 아니면...
-
국어:73 수학:65-66 영어:4 동사:1 세계사:1 한국사:1 삼반수 했는데...
-
어줍짢게 어설픈 오르비애들한테 진로 질문하느니 그냥 이 영상 보는걸 더 추천함.
-
저번에펌한게나쁘지않았어
-
무언가를 설명한다(가르친다) 는 건 <-교수자가 그 '무언가'를 정말 완벽하게...
-
아이묭팬의최애곡 8
여기묭팬잇나요
-
미적 2-3라인은 거의 미적만 틀리는 케이스 아닌가 14
확통 기하랑 달리 공통 좀 치고 미적만 털리는 케이스 같은데 쟤네가 빠지면 미적은...
-
운동완료 30
구엨 튀긴미쿠(2005~2024) 집까지 걸어갈수 있을까..
-
과탑 눈사람 머임뇨
-
세종대 합격생을 위한 노크선배 꿀팁 [세종대 25][세종대학교 주거 관련 정보]] 0
대학커뮤니티 노크에서 선발한 세종대 선배가 오르비에 있는 예비 세종대생, 세종대...
-
가벼운 느낌이 너무 싫음 진짜 좋아해서 다가가고, 다가오는 느낌이 아니라 한번...
-
홍익대 합격생을 위한 노크선배 꿀팁 [홍대25][자린고비 새내기들을 위한 홍익대 장학금 꿀팁] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
단국대 합격생을 위한 노크선배 꿀팁 [단국대25][천안캠퍼스 기숙사 꿀팁] 0
대학커뮤니티 노크에서 선발한 단국대 선배가 오르비에 있는 예비 단국대학생,...
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][새내기라면 한번쯤은 해보면 좋을 것]] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
미래의 의료 : 비대면 전문 진료 1인 의원의 가능성 0
직원 고용하기도 귀찮고 비용도 많이들고 그냥 대충 집에서 전화로 혈압당뇨약 리핏,...
-
애인이랑 볼수있어
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][중앙대학교 내부 장학금] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
1.과목명이 에서 로 변경 2.'지위' 부분은 중학교 사회랑 겹친다고 삭제 3.수능 범위에서 제외
-
미적분이 학교에서 안열려서 못들었는데 cc나오려나요? 외고 내신 3점대에 수학은...
-
23살 새내기 0
20살 21살 동기들이랑 친해지기 힘들까요? 새터는 갈거 같은데 내가 20살때 일할...
-
올해 겨울은 더 시리다
-
이화여대 합격생을 위한 노크선배 꿀팁 [이화여대25][이화여대 카공 맛집 탐방] 0
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
건국대 합격생을 위한 노크선배 꿀팁 [건국대 25][기숙사 비전홀 vs 레이크홀]] 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
12000명 나오려나? 4자리수 걱정해야 할 판
-
2번은 모든 실수에서 연속인가요 아니면 x=-1에서 불연속인가요?
-
이건좀... 6
상하차 잡혔는데 4일연속 근무확정...ㅋㅋㅋㅋ
-
문과로 학과 상관없이 높은 대학 가고싶은데 서성한 낮과랑 중앙대 가능할까요?...
-
홍천 산악지대서 훈련 중 굴러떨어진 20세 육군 일병 사망 6
강원 홍천 산악지대에서 육군 일병이 훈련 중 경사에서 굴러떨어져 숨지는 사고가...
-
수능 국어를 공부하면서 처음에 감을 잡는거 빼고 감 잡은 후에 인강을 계속 듣는...
-
그걸 업체불러서 치우기가 되나
-
수학 실수만 안했어도…
-
오전훈련 끝 3
오늘같은날은 뛰는게 더 빠를듯
-
수능끝난 분들 1
요즘 뭐하면서 시간보내나요? 게임을 해도 시간이 정말 안가네요
-
사진 말고 눈으로 봐야 더 좋네
-
나가기 싫다 ㅠ 0
눈 너무 온단 말이얌,,,
-
∀x(Ex) 이 식의 뜻은 "모든것이 존재한다" 부정형은 ∃x(¬Ex) 이고 뜻은...
-
눈도 안오는디
-
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ 아니 이게 이렇게 슬픈 노래였나......
-
동국대 한의대 1차발표 오늘 몇시에 나옴?
-
체감상 몇백mL는 흘린듯 ㅅㅂ
-
진짜설국이에요 너무예뻐요 다들한번씩밖에나가보세요
-
전교생 앞에서 독서감상문 낭독하는 기분... 빨리 묻혔으면
-
인상적인 꿈 1
쓰고싶은데 원래 꿈은 깨면 다까먹자나
!
이게 수학?
이게 이렇게 푸는 문제엿다니..
이건 어디 문제인가요?
경북대 의대 2021 모의논술입니다.
내생각엔 이게 더 어려운듯
리만가설아님?
쉿
혹시 5번입니까..?
유튭 보다가 비자명한 실수부가 1/2 라고 했던거 같은데..ㅋㅋㅋ
그거 증명하시면 100만달러 ㄱㄴ
어디까지나 추측일뿐...
ㅋㅋㅋㅋㅋ 와 난리났네
편미분 때리면 안되나요
그렇게 안해봐서 잘 모르겠네요, 된다고 해도 현장에서 편미분 쓰면 감점일 것입니다.
넵 감사합니다
이렇게 풀면 안되나요?
미분 가능하다는 조건 없기 때문에 안됩니다
미분가능성이 보장되어있지 않은상황에서는 미분법은 사용하지 못하지만 미분계수정의는 사용할수 있는거 아닌가요?
미분법이 애초에 미분계수의 정의로부터 나온 것이기 땜에 안됩니다
사용하신 g'(0), f'(x) 등의 수/함수가 정의되는지 부터 논의해야 되는데, (g(h)-1)/h 의 극한값이 존재한다는 보장이 없으므로 정의가 되지 않습니다
넵 감사합니다
죄송하지만 아무리 고민해봐도 의문이 풀리지 않아서 다시 질문드립니다. 위와같은 문제에서는 f'(x)를 구할때나 f'(0)을 구할때 이 함수나 수가 존재하는지 증명하지 않고 푸는데 위 문제와 이 문제의 차이점은 무었인가요..?
네 안녕하세요 미분에 대해 보기위해 우선 문제부터 간단히 보면,
1번 문제는 x=y=0 집어넣으면 바로 f(0)=0이 나오고요, 따라서 주어진 극한을 변형하먄 '미분계수의 정의' 에 따라 0에서의 미분계수, 2번 문제를 풀 수 있습니다. 이때 저 "극한값이 존재하기에" f'(0)=1 인 겁니다.
3번째 문제는 사진과 같이, 항등식을 이용해 극한값을 변형할 수 있습니다. 그런데 앞에서 이미 f(h)/h 의 극한이 1임을 알아냈고, 따라서 극한이 "존재하기에" 도함수가 존재하는 것입니다. 그 전까지는 미분 가능한지 모르죠.
반면 제가 올린 문제는 같은 방법으로 극한값을 구하려는 시도를 했을때, 이 문제와 달리 극한값이 존재하는지 안하는지 모릅니다.