라이프니츠의 위엄 #다이어그램
0. 라이프니츠의 위엄
유튜브에서 '이게 바로 라이프니츠의 위엄이죠' 영상을 봤습니다.
저도 떠오르는 게 있어서 주저리주저리 라이프니츠 썰을 풀어봅니다.
1. 정언문장
모든 S는 P이다
어떤 S도 P가 아니다(=모든 S는 P가 아니다)
어떤 S는 P이다
어떤 S는 P가 아니다
위와 같은 문장을 논리학에서는 정언문장(categorical proposition)이라고 합니다. 쉽게 말해, 두 카테고리 간의 관계를 나타내는 문장이라고 생각하면 됩니다. 수학 집합과 명제 시간에 배워서 다들 익숙할 겁니다.
2. 라이프니츠 다이어그램
라이프니츠는 정언문장을 다음과 같이 선형 diagram으로 나타냈습니다. 따로 설명이 필요하지 않을 만큼 직관적입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 아래 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
3. 오일러 다이어그램
오일러는 원으로 정언문장을 나타냅니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
4. 벤 다이어그램
벤은 오일러 다이어그램을 개량합니다. 아무것도 없는 부분에는 빗금을, 대상이 존재하는 곳에는 x를 표시하는 방식입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
5. 루이스 캐럴의 다이어그램
벤 다이어그램은 집합이 넷인 경우에는 원으로 나타낼 수가 없습니다.
위와 같이 그리면 ‘A와 D만 있는 영역’과 ‘B와 C만 있는 영역’을 나타낼 수 없습니다.
참고로 벤이 제시한 집합이 4개일 때의 다이어그램은 아래와 같습니다.
이거 말고 아래처럼 꿀렁꿀렁한 버전도 제시하긴 했습니다.
_이미지 출처: Venn, J. (1880). On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. London, Edinburgh, and Dublin philosophical magazine and journal of science. R. Taylor.
이외에도 벤은 집합이 다섯, 여섯인 경우까지도 어떻게든(혹은 억지로) 그림을 그려내긴 했는데, 일곱 개부터는 따로 언급이 없습니다. 실제로 컴퓨터 없이 그려내기가 몹시 어렵고, 추상화 같은 벤 다이어그램이라서 실용적으로 활용하기도 어렵습니다.
이런 문제점을 해결하기 위해 루이스 캐럴은 아래와 같이 사각형으로 나타내는 방법을 고안합니다.
(참고로 여기서 루이스 캐럴은 『이상한 나라의 앨리스』, 『거울 나라의 앨리스』 저자이기도 합니다. 작가이기 전에 수학자이기도 했으며, 『Symbolic Logic』을 쓰기도 했어요.)
사각형의 위쪽은 X, 아래쪽은 ~X, 왼쪽은 Y, 오른쪽은 ~Y를 할당하는 거죠. 그러면 아래와 같이 영역이 나뉩니다. (∧는 and, ~은 not을 뜻함.)
셋일 때는? 안쪽에 사각형을 하나 더 만들어서, 사각형 안에 있으면 Z, 밖에 있으면 ~Z를 할당합니다.
예를 들어, 질병관리청에서 제시한 <중독 분류도>는 캐럴의 사각형을 활용했습니다.
_출처: https://www.kdca.go.kr/contents.es?mid=a20308060100
이런 식으로 나타내면 카테고리가 더 많은 경우도 다음과 같이 체계적으로 나타낼 수 있습니다.
_그림출처: Carroll, Lewis (1896). Symbolic Logic. Macmillan.
6. 파그난의 SYLL
2012년에 발표된 따끈따끈한 다이어그램입니다. 키보드에서 완전히 구현가능합니다.
모든 S는 P이다
S→P
어떤 S도 P가 아니다
S→•←P
어떤 S는 P이다
S←•→P
어떤 S는 P가 아니다
S←•→•←P
직관적으로 화살표 방향으로만 이동할 수 있을 것 같죠? 맞습니다. 예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 S→M, M→P이며, 이를 연결하면 S→M→P입니다. S에서 출발하여 P에 도착했으니 결론 “모든 S는 P이다.”가 타당하게 도출됩니다.
다음과 같은 규칙도 직관적으로 받아들일 수 있습니다.
대우규칙: 어떤 S도 P가 아니다(S→•←P) ≡ 어떤 P도 S가 아니다(P→•←S)
교환법칙: 어떤 S는 P이다(S←•→P) ≡ 어떤 P는 S이다(P←•→S)
그러면 연습을 해볼까요? (직관적으로 “이게 되나?” 싶은 추론들은 다 성립합니다. ㅎㅎ)
1. 모든 A는 B이다. 어떤 A는 C이다. 따라서 ____
A→B, A←•→C를 연결하면 B←A←•→C이고, 이는 B←•→C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 C는 B이다.”입니다.
2. 어떤 A도 B가 아니다. 어떤 A는 C이다. 따라서 ____
A→•←B, A←•→C를 연결하면 C←•→A→•←B이고, 이는 C←•→•←B으로 간결하게 나타낼 수 있습니다. 따라서 정답은 어떤 “C는 B가 아니다.”입니다.
3. 모든 A는 B이다. 어떤 B도 C가 아니다. 따라서 ____
A→B, B→•←C를 연결하면 A→B→•←C이고, 이는 A→•←C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 A도 C가 아니다.”입니다.
덧: * SYLL은 syllogisms(삼단논법)에서 가져온 용어입니다. 관련 논문은 다음과 같습니다.
Pagnan, R. (2013). A diagrammatic calculus of syllogisms. In Visual Reasoning with Diagrams (pp. 33-53). Birkhäuser, Basel.
7. 라이프니츠의 위엄
오일러 다이어그램이나 벤 다이어그램은 시각장애인이 점자로 인식하기에는 다소 어려운 구조라고 합니다. 그래서 2015년 서울대학교 산업공학과 삶향상기술연구실(박우진 교수)에서 시각장애인을 위한 다이어그램을 개발했는데, 다음과 같습니다.
이렇게 하면 두 집합이 겹치는 부분이 어느 정도인지 점자로도 쉽게 확인할 수 있다고 해요. 뭔가 앞에서 봤던 것과 비슷하죠? 네, 라이프니츠 다이어그램과 핵심 발상이 똑같습니다. 박우진 교수님 연구실에서 라이프니츠 다이어그램을 알고 만들었는지는 잘 모르겠지만, 라이프니츠가 참 대단한 사람이라는 생각이 들긴 합니다. 이 역시 라이프니츠의 위엄이랄까요. ㅎㅎ
8. 잡담
2019학년도 수능에 나온 '가능세계' 다들 알죠? 라이프니츠가 “이 세계는 무한하게 많은 가능세계 중 최선의 세계이다”라고 말한 데서 출발한 개념입니다.
또한 수능국어/PSAT/LEET 준비하는 분들은 '라이프니츠의 법칙'도 이미 알고 있을 겁니다.
"라이프니츠는 만일 X와 Y가 동일하다면 이들이 똑같은 특성을 갖는다는 ‘동일자 식별 불가능성 원리’를 제시했는데"
_출처: 2022학년도 수능 예시문항 국어 5~10번
"두 대상이 모든 속성을 공유할 경우 그리고 오직 그때에만 그 두 대상은 동일하다"라는 라이프니츠의 법칙"
_출처: 2010학년도 언어추론(예비) 25~27번
만약 예시문항을 분석하지 않아서 이 내용을 지금 처음 본 수험생이 있다면, 아래 영상을 꼭 보길 바랍니다. 3분 정도면 출제 포인트를 하나 정리할 수 있습니다. :)
필요충분조건 표현법 #라이프니츠의 법칙
https://class.orbi.kr/course/1888/lesson/40685
이해황
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
둘 중 하나 고르라면 머가 좋을까요..? 문과 전문직은 생각없고 대기업이나 공기업 취업이 목표입니다
-
과기대 경북대 1
집은 대구입니다! 과는 순서대로 식품생명공학 식품공학 입니다! 과기대를 간다면...
-
얘네는 체크 셔츠 그 자체를 사랑하는게 아님 패턴이 주는 안정감을 사랑하는 거임...
-
첫 프사라 추천 부탁해요!!
-
ㅋㅋ
-
어떻게 하면 될까요
-
냥공다니는 친구가 있는데 학교생활 잘 하고 초인싸임 근데 체크무늬 셔츠가 진지하게...
-
전쟁다람쥐 0
-
공대였는데 트위드 입고 감 다들 후드집업 맨투맨 입고 와서 좀 많이 쪽팔렸음 1년...
-
Ai짜아식 똑똑하네;;;;
-
진짜 대단한게 되어버리는듯 어떻게든 되겠지 하고 하다보면 될 수도 있는걸 처음부터...
-
시대 반배정 0
할때 수학만 거의 보나요? 수학 백분위 98이고 특별전형으로 들갈 거 같은데 이거면...
-
맞팔구 3
똥테좀 떼고 싶어요
-
뻥임뇨
-
추천 받아요
-
내신 때 경제했었는데 매몰비용<—이게 의외로 평소에 ㄹㅇ 도움되더라
-
성적표에 국어 또는 수학 1등급 없으면 살기 싫어짐 0
반대로 하나라도 1등급 받으면 다른과목 박아도 기분 좋음
-
올해는 뭔가 기대가안되고 귀찮음 그리거 사회성배터리가 다 떨어졌어요 이미 작년에...
-
ㅂㅂㅂㅂ 4
ㅃㅃ
-
과외 구할때 1등급이라 못쓰는거 개빡치네 아 ㅋㅋㅋ 한과목도 아니고 ㅅㅂ
-
공부 계획 0
3모까지 계획을 대강 잡긴 햇는데 제가봐도 좀 힘들어보이네요; 방학 땐 최소...
-
현생에서 오르비보다 중요한게 많음을 이제서야 알고 여기를 떠나려 합니다. 앞으로...
-
하아 부모님이 과목 다 바꾸고 정시할거면 차라리 자퇴해라심 10
아진짜 자퇴하면 모고도못보고 학평도못치는걸아나...
-
인하대 합격생을 위한 노크선배 꿀팁 [인하대25][주거 꿀팁 -기숙사 편] 0
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
금테 달고 어그로 끌어보고 싶네요
-
인문 동일과 내신 bb 기준
-
이거 A'이 시선 방향과 이루는 각도를 30도라고 함 아님 60도라고 함?
-
얼마나 됨?
-
사실 사탐런은 0
올해 대학교에서 어느정도 조절 들어가지 않을까 싶긴 한데...
-
어째 풀콤이 절대안나오는 것일까. 1삑만 열번 넘게나온듯 하하 사실안웃겨
-
그들이 날 지켜보고있다는 사실은 이미 알고있다 그럼 뭐 별로 할거없는거 아닌가?
-
간식 받았당 지방 러셀까지 간식 다돌리네 ㄷㄷ 수고 많으셨습니다
-
매우 다수를 가르치는게 미래가될수있습니다 좋기도하고 사회가 그걸 원할수가 있어요.
-
조금 이른 저녁 0
메뉴는 삼각김밥과 라면
-
내일은 진짜진짜 조발해주실거죠????????????????...
-
[Live] 이과 극상위권이 사탐런을 했을때 벌어지는 일 5
제 소개를 하자면 현 인하대의대생 예비 중앙대의대생 이건 작년 평가원성적표입니다....
-
ㄷㄷ하네 거의 2틀 이내겠죠,?
-
다들 윤성훈하네 2
나만 lim인가
-
이건 ㄹㅇ임뇨
-
팟캐스트가그리유행하나요
-
솜.사.탕
-
과1사1 ㄱㄱ 5
에반가용
-
열심히살아야겟다
-
그게 나야
-
아무도 없는 밤에 너와 둘이 길을 걸을 때별생각 없이 했던 말들을 네가 달달 외울...
-
8문제 푸는데 두 시간 썻네
-
자아g 1
??
-
과탐1등급들 경제로불러들이지말라고
파그난의 방식은 좀 어렵네요.
킹갓해황쌤
이것이 바로 라이프니츠의 위엄이죠
이것이 바로 실력파쌤의 위엄
실력파임을 강조하기 위해 본문하단에 제 얼굴사진을 방금 넣었습니다.
찰스 도지슨 A.K.A 루이스 캐럴
뭐라는거죠?
오..
이..이게뭐노..
해황쌤 리트 준비생인데 혹시 오르비클래스에 리기추 강의 업로드 일정계획이 어떻게 되실까요?? 막판에 3개년 기출 정리하고 시험장 들어가려고 하는데 21년도와 22년도는 각각 2지문씩밖에 업로드가 안되어 있어 근 1-2주 내로 추가 업로드 계획이 있으신지 궁금합니다 ㅠㅠ
감사합니다!