[어려움] 미적분 자작문제
직선 및 곡선 에 의해 둘러싸인 영역 중 보다 위에 있는 영역의 넓이를 라 하자.
의 값을 구하여라. [4 점]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
건동홍라인 자퇴후 4월 15일부터 공부 시작 작수 성적 백분위 기준 언미생ㅈㅣ 92...
-
중1 때부터 고3까지 남초 여초 둘 다 눈팅 위주로 했는데 (디시, 네이트판, 펨코...
-
성적표뜨고 좀 나중에 받나요 접수직전에
-
요즘 너무 쳐맞네
-
진짜 건실하게 산다
-
자러가야겠다 2
힘들어요...
-
가채점을 안해서 먼가 끼기가 불편함
-
진짜 잠 5
보이면 차단 박아주셈
-
원래 안그러지 않음?
-
딱빰 마렵네
-
세지 vs 한지 1
뭐가 더 나을까요 사문이랑 같이 할거임
-
하도 쳐맞다보니까 수능장 문제 볼때 마음이 편했음
-
서버 점검하네ㅋㅋ
-
ㅇㅈ하지마셈 7
디시에 박제됨뇨 원투데이 본게 아님
-
심심해서 유튭 인스타 보다 질리니까 오르비 보는데 글리젠이 없네.... 다들 수능...
-
ㅇㅈ 1
오늘만 몇번째냐
-
ㅇㅈ ㅋㅋ 11
ㅖ
-
펑임뇨
-
난 수능 끝난 n수생이 아니라 대학생이었음
-
22 예과1학년이니까 22,23 놀고 24본1 빡세게 공부하고 좀 감 잡을꺼아님...
-
빈집털이 하셈 난 안 할 거임
-
오르비에 처음 글 써봅니다 먼저 저는 일단 수시 거의 붙은 것 같아서 반수 준비중인...
-
스펙 평가좀 12
어떰뇨
-
ㅅㅂ질렀다 8
Team기하& Team07 ㄹㅊㄱ~!
-
국어 화작 2(낮) 수학 미적 88 -1 영어 2 생1 50 -1 지1 45 - 1...
-
일반물리학 질문 1
만약 초기 높이와 최종높이가 같은 지표면에서 연직 위로 포물선 운동을 한다고 하면...
-
안아주세요 12
안아주떼욤
-
약값만 46억원…희소병 딸 살리러 국토대장정 나선 목사 아빠 4
[뉴스리뷰] [앵커] 근육이 점점 약해지는 희소병에 걸린 딸아이를 위해 국토대장정에...
-
화1은 인정하거든요 저희 학교 화학쌤도 1은 하지 말라하시고물1은 왜 그런걸까요...
-
졍체가뭐야
-
노래까지 개잘하네 ㅋㅋㅋㅋ 박효신 해줄 수 없는 일 부르는데 웬만한 가수급임 이렇게...
-
1.코딩이 존나 재밌는가? 2.물리 화학은 도저히 안되겠는가? 3.학벌대신 실력으로...
-
머보지
-
수학 0
미적 1틀 96 표점 몇점 예상하시나요 ?
-
작년에 22344 받고 반수 한 사람인데 올해는 12423 받음...
-
일단 자자 1
주식하다가 건강만 배리고 패턴 망가지고 에휴 레포트? 안써 뻑큐
-
매드무비 보고 있는데 제3우스 개잘패서 마음에 든다 너 앞으로도 그렇게 패면 될것같다
-
빅뱅 탑 복귀좀 4
뱅뱅뱅 후렴 라이브로 불러줬으먼 진짜 질질싸는데
-
뭔 내용인지 이해가 안되 그리고 뭔 실험을 6개씩 쳐하는데 개화나네 진짜 걍 한번만...
-
애니 ㅊㅊ 좀 8
음지말고 리스트에는 나히아 도쿄구울 최애의아이 사이버펑크 헌터헌터 블루록 정도가 잇음
-
이번에 과외 쌤을 알아보고 추리고 추려서 고려대 간호학과 한분이랑 경희대 의대...
-
뭐? 메시?
-
오리한테 왜그랴
-
단 하나의 깃털도 남기지 말고
-
20살 노벨물리학상수상(led x-효과) 21살 프리미어 리그 입단 fc바로셀로나...
-
미적 2컷 2
근데 이게 2안나오면 입시기관들 대가리 뽀개버려야 하는거 아니가... 공2 미3틀 80점임
-
재수도 해버려서 이제 내가 더 잘하려나.. 우울하네
-
이거 푸시는 분 진짜 실력자 인정... 오류 있다 싶으면 말해주세요:) 검토는...
-
님들아 고등학교 졸업자는 고등학교 재입학 불가능하죠?? 2
만약 고등학교 중퇴를 한다면 재입학 가능??
1?
아뇨... 그럴 리가 있겠습니까. 다시 해보세요. 깜빡하고 안 적었는데, 답은 유리수 꼴입니다.
ㅋㅋㅋ 찍었어요
음함수인거 같은데 버스라 못풀겠네요..
교점 x좌표 t로 두고 치면 될 것 같은데 걷는 중이라 암산이 안되네요 ㅋㅋㅋ
답이 기대되는군요
아까는 k->0+을 k->inf로 생각해서 0<x<pi/2에서만 교점을 갖는구나~ 하고 좋아했는데 집 와서 다시 보니까 교점이 무한히 많아지는 상황이었군요... alpha(1)=0이라 할 때 순서대로 교점을 alpha(1), beta(1), alpha(2), beta(2), ..., alpha(n), beta(n)으로 둘 때 모든 자연수 n에 대해 k=sin[alpha(n)]/alpha(n)=sin[beta(n)]/beta(n)이라는 관계식을 만족하는 상황에서 A(k)= sigma [ integrate [sin(x)-kx] dx from alpha(n) to beta(n) ] n=1 to inf 라는 급수를 k에 대해 나타내야겠네요. 아직까지는 A(k)가 k에 대한 다항함수와 삼각함수로 이루어진 함수로 나올 것 같진 않고 (2n+1/2)pi<beta(n+1)<(2n+1)pi, 2npi<alpha(n+1)<(2n+1/2)pi를 이용해서 샌드위치 정리를 같이 활용해야 답을 구할 수 있을 것 같은데... 더 고민해보겠습니다 ㅠㅠ
현재까지의 상황은 이러합니다. 조금 더 고민해볼게요!
1. k->0+에서 y=sin(x)와 y=kx의 교점은 무수히 많음. 수열의 합의 극한으로 표현하기 위해 x=0부터 교점을 작은 수부터 크기 순으로 a(1), b(1), a(2), b(2), ..., a(n), b(n)이라고 명명.
2. 구하고자 하는 값은 lim n->inf [ sigma i=1 to n [ integrate [sin(x)-kx] dx from a(i) to b(i) ] ]
3. k=sin(a(i))/a(i)=sin(b(i))/b(i) 임을 알고 cos(a(i))+1/2k(a(i))^2-cos(b(i))-1/2k(b(i))^2 을 k에 관해 나타내어야 A(k)를 k에 대해 표현할 수 있음.
4. 추가로 아는 것은 a(i)와 b(i)의 i에 따른 범위. k->0+이면 n->inf고 b(i)-a(i)~pi인 점 등
1/pi ?
다시 해보시죠!
1/2pi 나왔습니다.
안타깝네요! 아닙니다...
1/4pi. 아니면 자러갑니다. ㅜㅜ
아닙니다! 유리수 꼴입니다
1/2. gg하겠습니다. ㅠㅠ 문제 잘 풀었습니다. 저는 이만..