포몬데 포카 어디에도 해설이 없는 문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시대 겨울 단과 0
시대 단과 처음 갈 예정입니다. 미적 개념을 듣고 싶은데 어떤 선생님이 좋을까요?
-
근본적인? 행복은 존재에서 나오는게 아닐까 사람들이 우선 성취에서 기쁨을 느끼지만...
-
얼버기 2
ㅈㄱㄴ 오늘도 화이팅!
-
김민재 골이라니 2
ㅇㄱㅈㅉㅇㅇ?
-
zZ 2
-
기상 완료 드디어 오늘 예비군 마지막날
-
열심히 해보곤 있는데 원래 과탐에 stay 할 것 같네요,,, 십헬과목
-
인듯... 외모관리 중요한듯.
-
선결론) 물2 24.77, 47, 99, 69~70 화2 23.80, 44,...
-
궁금한게 2년뒤 대학에 입학하려면 최소 공군을 5월에 입대해야하는데 커트라인 보니깐...
-
77ㅓ억 간만에 대승이구나
-
얼버기 1
진짜 이른 기상이다 수도병원 가야해 피곤s
-
다 맞게써도 답안이 교수님 맘에 안들면 합격 못한다는거 진짠가여!?ㅠㅠ
-
안녕하세요 고3 정시생입니다 제가 고2 6모때 수학 높5맞고 고2 8월에 정시로...
-
밤샌다매. 12
님들아. 잠 안잘거라매.
-
ㄱ ㄱㄱㄱㄱㄱ
-
Ebs 기준으로 컷예측하고 ebs가 타사이트보다 백분위랑 표점이 널널해서다<< 라는...
-
아짜증남 0
대충 수능 망쳐서 딴 사람하고 비교되어 슬프다는 글썼는데 이런 글쓸시간에...
-
챔스보자
-
섹스
-
95 100 100 100을 성적표 오류라고 100 100 100 100으로 속임
-
기존 로고가 걍 눈알 심볼이니까 1. 눈알 심볼 그대로에 얇은 선으로 날렵하게...
-
전대 정시 0
54363인데 전대 하위과 정시 지원할만 한가요 언매 미적 생윤 사문입니다
-
전 260-280 사이
-
졸리다 2
바바
-
어렸을때 구몬한자 배우면서 사이비가 한자인걸 깨닫고 충격먹었음 이게 무슨 헹가래가...
-
수능끝나면 연락준다고 했는데 아직까지 연락 없는거보면 사이비한테도 걸러진듯...ㅠㅠ
-
예 예 예 예예예 예 예 예 예 예 예 예예예예~
-
가족 제외 전화 포함해서 전 5:5
-
얼버기 4
-
씹덕만 들어와줘 21
이전 프사랑 지금프사 머가 더 나아?
-
애매하게 고대 붙어서 반수하는 것보다 아예 3떨하고 절치부심으로 쌩4수해서 당당히...
-
누가 글좀 써봐 8
나 심심해
-
고뱃은 설캠으로 따려고 안받음 그래야 합격 실감이 나지 않겠음?
-
맨날 들어도 어른들이시거나 또래 남자애들 뿐이었음
-
맞팔하실분 ㄱㄱ 4
저는 항상 잡답태그를 답니다
-
덕코복권 무서운 진실 11
이렇게까지 1등이 안나온 적도 있다
-
MBTI 인증 0
NOW BEFORE INFJ에서 ENFP로 변화
-
너도 내 맘 안다면 ?
-
심심하다 2
배고프다
-
뭔가 전부 50:50 느낌임 중립적인 사람 ㄷㄷ
-
근데 기분 좋음
-
글 1
말 들어드림
-
인터넷 친구긴하지만 여기서 대화하는 분들중에서 친한분 3분이 인프피임
-
혼자 떠들고 있으면 관심을 한몸에 받고 있는 것 같아서 창피함
-
수능준비하면서 살이 너무쪄서 빼야하는데 계속 먹고싶어요 어떡하죠…
-
작년까진 못봤는데
-
설대 내신 0
평반고~ㅈ반고 내신은 몇점대까지 서울대 내신 BB받나요? 공대가고싶은 생각이...
-
참가자 없어서 참가만 하면 10만원 가져갈 것 같은데 기술이 없어서 기초적인...
-
복권돌리지마제발내꺼야 14
제발
원점에서 무슨일이 일어나고 있는거 같은데 해결이 잘안되네요
문제 출처랑 답좀 알려주실수있나요?
답 35 출처는 포카칩 수능직전 모의고사 입니다
아마 원그리면 ㄷ진다사건,.저격문제 같습니다.
수직되는 부분에서 뭔일 있을거 같은데
2014학년도 수능직전 포카칩 모의고사 답은 35입니다.
g(t)= 절대값 √t²+f(t)²-r 이고 원을 t가 음수인부분부터 그려보시면 절대값안의 값이 양수->0->음수->-r
->음수->0->양수 로 바뀜
일단 f(t)=√t²+f(t)-r 이라고 하고 이 그래프를 그린뒤 음수인부분은 뒤집어 엎으면 됨 ... 그리고 f(t)를 미분해서 f'(t)를 구하면 골때리는게 t가 양수인부분과 음수인부분으로 또 나눠짐
t가 양수인부분을 먼저 살펴보기로하면 음양부호결정하는 분자식이 2t²-3at+a²+1이고 이 식이 두근을
가지냐 한근을 가지냐 근이없냐 를 또 구분해야함 ...우리는 언제나 그랬듯이 한근을 가지는 경우 먼저 살펴봄 ...이때에도 위의 분자식에서 근과계수의 관계를 따져보면 한근이 양수임을 알수있음
t가 양수인 부분에서 f(t)를 대략적으로 그려보면 계속 증가하는 그래프임.... 맨 처음처럼 절대값안의 부호를 고려해보면 t가 0~s(f(t)의 근)에서는 음수이므로 위로뒤집고 s~ 에서는 양수이므로 그대로....
t가 음수인부분에서의 f'(t)는 t가 양수인부분에 음수만붙인거... 따라서 t가 음수인부분에서의 f(t)는
감소하는 그래프 .... 맨처음처럼 절대값안의 부호를 고려해보면 t가 ~ p(f(t)의 근)에서는 양수이므로
그대로 p~0에서는 음수이므로 위로 뒤집고
종합해보면 미분불가능 용의점이 3개가 나옴 t= p,0,s 근데 2개이므로 선량한 점이 한개 있음
바로 t=s 이부분에서 f'(t)=0 다른 두지점은 기울기가 0일수 없음....
f'(t)=0이므로 위에서의 음양부호를 알려준 분자식 t²-3at+a²+1의 판별식이 0 따라서 a의 값은 루트8
그리고 s= 2분의3 곱하기 루트2
f(t)=0이므로 s와 a를 대입하면 r=루트4분의27
왜 s부분에서는 0일수있죠? 제가거기서 막혀서 아무리해도 불가능점 세개나와서ㅠ
t가양수인부분에서 f'(t)는 0보다같거나 항상 양수
t가 음수인부분에서는 항상 음수
용의지점 3개중 기울기가 0이려면 양수인부분밖에 없음....
어 저기 절대 근이 3개가 나오지 않는데 얘 근 2개 밖에 안 나와요 컴퓨터로 그래프를 그리고 별짓을 다해도 근이 2개 밖에 안 나옵니다
근은 2개인데 저위에 써놓은 3점은 극점들임...
극점에서의 기울기가 0이냐 아니냐를 따지면되는거...
아 와 개어렵네요 해결했습니다 오르비 짱짱맨