'장시인 N제' 수능 수학 문제집 배포합니다.
안녕하세요! 수학 공통 과목에 대한 수능 대비를 위한 '장시인 N제'가 출간되었습니다. '장시인 N제'는 수능 수학의 출제된 부분부터 출제되지 않은 영역까지 모두를 포괄적으로 다루는 고퀄리티의 수학 문제집으로서, 수능을 준비하는 학생분들께 많은 도움을 줄 것입니다. 감사하게도 파급효과님께서 서평을 작성해 주셨습니다. 모킹버드에도 좋은 퀄리티의 문제들이 많으니 많이 이용해 주세요~
#문제집 구성
'장시인 N제'는 기본적으로 수능 공통 수학 전 영역을 커버하는 구성으로 되어 있습니다. 대부분의 고등학교 수학 교과 과정을 다루며, 각 영역별로 다양한 난이도의 문제들을 포함하고 있습니다. 개념에 따라 구분되어 있는 문제들은 학습 단계에 맞춰 순차적으로 난이도가 증가하는 형태로 배치되어, 효과적인 학습 과정에 맞춰진 구성이라 할 수 있습니다.
#난이도와 해설
'장시인 N제'는 난이도를 다양하게 조합하여 구성하였습니다. 기초 개념부터 응용 문제까지 포함되어 있어, 단계적으로 난이도를 높여가며 문제 풀이 능력을 향상시킬 수 있습니다. 또한, 모든 문제에는 상세한 해설이 오르비 장시인 페이지를 통해 함께 제공됩니다. 학습한 내용의 이해도를 높이는 데 도움이 되는 해설을 차례로 업로드할 계획입니다.
#모의고사로도 제공되는 N제들
'장시인 N제'는 모의고사 형식으로도 따로 구성되어 있습니다. 장시인 모의고사는 수능을 실전 위주로 대비하는 데에 큰 도움이 되고, 시험 상황에 익숙해지고 효과적인 대응 능력을 기를 수 있도록 도울 것입니다. 수능에 가까운 형식과 난이도의 문제들은 실제 시험 경험과 유사한 수준에서 학습할 수 있게 해줍니다. 해당 모의고사들은 해설과 마찬가지로 오르비를 통해 만나 보실 수 있습니다.
#문제 해결 전략 제시
'장시인 N제'는 단순히 문제를 푸는 데 그치지 않고, 문제 해결에 필요한 전략과 방법을 제시합니다. 전 문항 꼼꼼히 기재된 코멘트를 통해 문제를 더욱 효과적으로 풀이할 수 있는 논리적 사고력과 문제 해결 능력을 기를 수 있습니다.
#별도의 보충 자료 및 온라인 리소스
'장시인 N제'에는 문제집 외에도 보충 자료와 온라인 리소스가 함께 제공될 것입니다. 기존 문항들을 변형한 문항이나, 새로 등장하는 평가원 모의고사들을 반영하여 기존 문항에 대한 보충 자료를 업로드할 것입니다. 이를 통해 학습한 내용을 보다 심도 있게 학습하고 복습할 수 있으며, 언제 어디서나 편리한 학습이 가능할 것입니다.
'장시인 N제'는 수능 수학 대비에 필수적인 도구로서, 수학 영역에서 좋은 성적을 얻기 위한 모든 학생들을 위한 교재입니다. 꼼꼼한 구성과 풍부한 문제들을 통해 여러분의 수능 수학 실력 향상에 도움이 되기를 바랍니다.
서평
"안녕하세요. 파급효과입니다.
먼저, 수험생활 중임에도 문항 제작에 대한 열정으로 무료 N제를 배포하는 것에 경의를 표합니다.
오르비에서 여러 문항 제작자를 유심히 살펴보고 스카웃하는 입장으로서
장시인 님은 충분히 좋은 문항 제작자로 성장할 여지가 커서 관심을 갖게 되었습니다.
이번에 배포되는 '장시인 N제'의 주요 문항들에 대하여 평을 남기자면...
수1은 실전에서 마주치는 문제에 비해 다소 어렵고 수2는 많이 어렵습니다.
매운 맛이지만 문항들이 꽤 괜찮습니다.
아무쪼록 많이들 풀어주시고 솔직한 후기 남겨주세요.
무료 문항 제작들에게 큰 힘이 됩니다."
-파급효과-
***
"안녕하세요. 장시인입니다.
저희 장시인 N제는 새로운 시각을 향한 경험 공유를 추구하는 자체 N제입니다.
오르비에서 지금까지 다양한 문제들과 모의고사들을 올려 왔는데요.
짐작하시는 분들도 계시겠지만, 저 역시 수험생으로서 입시를 치르고 있는 입장입니다.
다만 복잡한 수험생활 중에도 틈틈이 문제를 만들면서 쉬는 것이 저의 낙이었고
그렇게 쌓인 문제들을 여러분이 좋아해 주셔서 업로드하게 되었습니다.
문제 만들면서 여러 곳에서 연락도 오고, 제의도 많이 받았는데요.
비록 수험생 신분이라 당장은 힘들다는 말씀 드렸지만, 파급효과님을 비롯해서 도와주신 분들께
정말 감사하다는 말씀 드립니다.
비록 부족한 것이 많고 앞으로 4개월 간의 활동은 수능 대비로 힘들겠지만,
길게 보며 발전하는 장시인이 되겠습니다.
감사합니다."
-장시인-
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가산 5프로 4
아마 가산7프로부터는 사탐런이 의미가 없다고 생각하는데 과탐 가산점 5프로면 사탐런...
-
좀 해주세요
-
마플이나 풀까 1
한완기 너무 비싸 ㅠㅡㅠ 맨땅에 헤딩 작전 나도 해봐야겠다
-
ㅈㄱㄴ
-
과탐 하나를 꼭 하는게 좋을까요....? 지금 과탐 애매해서 사탐2개로 박고싶은데...
-
시대 첫수업 2
정규반들 첫날에도 3시간반 풀수업 하나요??
-
친구해주실분 2
주변에 ㄹㅇ 아무도없어서외롭네요...
-
지방러라 도움좀 네이버에 안나오노
-
지금 주2회하는데 (2시간씩) 고2 백분위 1컷에서 1개낮은 2->백분위 98까지...
-
코막혀서 열받아요 12
-
작년이 4퍼여서 저평가 받는거같네
-
진짜 이번만 딱 눈감고 진짜 실수로 합격시켜주시면 안되나요??
-
진짜 “전문직” 12
인류역사상 가장 오래된 직업 중 하나임 출퇴근이 자유로움 열심히 한만큼 벌수 있음...
-
지금 40등중 20등이면 탈락인건가요? 가능성 있는건가요? 애들이 없어서 안...
-
메디컬 목표하는데 내신 걍 버렸는데
-
솔직히 이건 맞았다고 해줘야 되는거 아니냐
-
앞단원들에 비해 너무 못해요ㅠ 3점짜리도 못 맞히는거 있어요 갑자기 퇴화됐나;;
-
20살 8월에 공군 입대를 햇기 때문 지금 생각하면 인생 최고의 저점매수이자 선택이...
-
재수 —-> 위대하신 현역을 갉아 먹는 개 악질 적폐 집단 삼수—> 악마 그 자체...
-
4 안부지런행
-
ㅇㅂㄱ 3
재곧내
-
외박 금지 4
아 ㅋㅋㅋ ㅠ 저 22살인디요 언제는 되고 언제는 왜 안되는데 ㅠㅠ 하…
-
솔직히 20대에 돈버는건 죽었다 깨나도 이분들 못이김 15
재네들이 영어유치원을 다니길 했냐 저녁 10시까지 야자를 하길 했냐 새벽 2시까지...
-
출근 완료 4
ㅎㅇㅌ
-
1컷 멀쩡하고 2,3컷이랑 표점 망할 것 같음
-
돈 몇십만원 깨작깨작 모으는것보다 헬스장 끊고 안빠지고 다니기 외국인 회화 레슨비에...
-
24국어가 나한텐 개꿀인데 열심히 영탐 준비해서 서성한 성적 받고 수능판 떴을듯...
-
복권 당첨되면 인생이 바뀔줄 알지만 사실 문제는 복권이 아니라 인생 그 자체였음을
-
원래 지구는 2학년까지 내신도 고정1이라 사탐런을 해도 지구는 유지한채로 사1과1...
-
의대 고르는데 이제 증원규모나 의평원 인증여부까지 따지는거야? 0
자칭 입시 “전문가“들 머리에서 김나는 모습이 훤하노
-
비메디컬 사탐런 2
(탐구 분야의 고수 형님들 제가이런 글 몇 번 썼는데 너무 길게 써서 그런지 아무도...
-
또는 고등학생때로 돌아간다면 돌아가? 라는 질문은 나를 굉장히 괴롭게한다 옛날...
-
개쌉에바쎄바같음?? 사실 각 보이는 데가 여기뿐이라 쓰긴 쓸텐데 생각이 많아짐요...
-
어느쪽이 나을까요?
-
해가뜨는군요 3
-
송도 사람많음? 5
독학재수학원이 대치급으로 많은데?
-
성균관대 문과 논술 합격했습니다. 바로 전 글 보시면 인증 가능합니다. 학원 안...
-
다음주부터 수능공부 해야지
-
서울대가 짬 -> 실제로는 서울대 합격할 수 있는 표본 일부를 불합격하고 연고대...
-
취침 4
다들 안녕히주무세용
-
분명 8시에 자서 2시쯤 깨는 계획이었는데..
-
미분VS적분 4
여러분은 고등학교 수준 내에서 미분과 적분 중에 무엇이 더 좋았나요?
-
기상 5
-
이어폰,헤드셋 끼면 답답해서 노량진 고시촌가서 1인실독서실결제후 스피커사용해서 인강들을려고 합니다.
-
셋 다 나군이라서 고민되는데 이건 단국치가 맞음?
-
썸남/썸녀에게 "같이 별 보러 갈래?" 라고 말할 수 있고 낭만이 넘치는...
-
추합이라도 ㄱㄴ? 간절함
-
쪽팔려서 남들한테 성적 못 말하고 다닐듯
-
맞죠? 1컷 맞추기는 확통이 2배 이상 쉽다는데
-
이게 맞나 ㅋㅋㅋㅋㅋㅋ
감사합니다 ㅎㅎ
레벨별로 번호대 대충 알려주실 수 있나요?
레벨 1은 4점 초중반부 문제 + 단순계산
레벨 2는 11~15번에서 20~22번급 어려운 문제고요.
레벨 3은 22번 이상급 초고난도 문제
레벨 4는 N제니까 낼 수 있는 수준의 문제들입니다.
감삼다
일단 3까지만 풀어봐야겠네요
좋은 자료 감사합니다
+ 혹시 기존 모의고사 5회와 동일 문제 구성인가용
기존 모의고사 우수 문항 + 새로 선보이는 제작 문항 둘 다 있습니다!
장시인모의도 헬이던데…n제도..허수는 이만 물러갑니다
굿 :)
혹시 해설은 어떻게 보는 지 알려주실 수 있습니까....
해설은 이미 올라간 문항들도 있고 하나씩 차근차근 올릴 것이나 올해는 말씀드린 사정으로 다소 더딜 수도 있습니다. 다만 쪽지로 문항 번호 알려 주시면 문제별 손해설은 보내 드립니다.
감사합니다!!!