합성방정식
수능 수학을 공부하다보면, 평가원 기출 문항을 분석하다보면 방정식은 방정식인데 합성함수가 얼핏 보이는 상황을 종종 마주하실 수 있으실 거예요!
예를 들어 2022학년도 6월 22번의 경우 다음과 받은 합성방정식이 제시되었습니다.
이 방정식의 의미는 방정식 f(x)=0 을 만족하는 실근들에 대해 각각을 편의상 1, 2, 3, 4라고 한다면 방정식 x-f(x)=1 or x-f(x)=2 or x-f(x)=3 or x-f(x)=4 의 해를 구하라는 것입니다.
0을 다른 거로 살짝 바꾸면 문제가 상당히 어려워질 것임을 확인하실 수 있으시겠습니다.
혹시나 수능에서 이러한 형태의 방정식을 볼 날이 온다면 f(x)가 간단한 함수가 아닌 한 가슴이 아찔해지죠?
비슷한 맥락입니다. '과도하게 복잡한 상황은 다루지 않는다'는 한국교육과정평가원의 매뉴얼에 따라 이 정도로 복잡한 형태의 방정식을 마주칠 확률은 작겠지만 뭐든 모래 주머니 효과를 받기 위해 훈련해두어 나쁠 것은 없으니까요 ㅎㅎ
2018학년도 수능 나형 21번입니다. 다음의 합성 방정식을 다루고 있습니다.
왠지 이 형태를 직접적으로 제시하면 학생들이 겁 먹을까봐 좌변의 함수를 g(x)로 제시한 후 g(x)=f(x)라는 완곡한 표현을 쓴 게 아닌가 싶은 생각도 듭니다.
방정식의 해석은 생각보다 단순합니다. 우리는 수학(상)에서 '뭔가 복잡한 상황을 맞이하면 치환해라'라는 것을 학습할 수 있었습니다. 따라서 f(x)=t로 치환하면 방정식 f(t)=t를 바라보는 상황임을 알 수 있습니다. 그래프로 해석하면 함수 y=f(x)의 그래프와 함수 y=x의 그래프를 그린 후 두 그래프의 교점의 x좌표가 바로 방정식을 만족하는 t값이 될 것임을 확인하실 수 있습니다.
그리고 마찬가지로 방정식 f(t)=t를 만족하는 실근 t들을 각각 편의상 1, 2, 3, 4라고 한다면 방정식 f(x)=1 or f(x)=2 or f(x)=3 or f(x)=4를 만족하는 서로 다른 실근이 주어진 방정식이 요구하는 실근들이 되겠습니다.
본 문제의 답까지도 한 번 내보세요! 합성 방정식에 대한 본질적인 이해도를 높이는 데에 도움이 될 것이라 생각합니다.
2019학년도 9월 나형 30번입니다. 다음의 방정식을 묻고 있습니다.
처음 봤을 때는 한 2주 정도 천천히 고민해보는 것이 의미 있다고 생각하지만, 지금은 글을 쓰는 중이니 바로 의미를 작성해두겠습니다.
우선 첫 번째로 의미하는 것은 f(x)=x 입니다. f(x)=x이면 당연히 f(f(x))=x 도 성립할 것임을 확인하실 수 있습니다.
두 번째는 f(x)=/=x 일 때인데, f(a)=b라고 해봅시다. 이때 f(a)=b면 f(f(a))가 f(b)가 됩니다. 그런데 f(a)=b일 때 주어진 방정식을 만족하려면 f(f(a))=a가 되어야하므로 f(b)=a가 되어야 함을 확인하실 수 있습니다.
따라서 f(a)=b이고 f(b)=a라는 한 쌍의 정보가 주어진 방정식을 만족하는 상황, 두 번째 의미가 됩니다.
실제 문제 상황에서는 f(0)=0, f(1)=2, f(2)=1, f(a)=a, f(b)=b를 만족하는 상황이 되어 함수 y=f(x)의 그래프와 y=x의 그래프의 교점의 x좌표가 0, a, b가 되고 함수 y=f(x)의 그래프와 함수 y=-x+3의 그래프의 교점의 x좌표가 1, 2가 됩니다.
대부분의 합성함수 개형 추론이라 불리는 유형의 문항들도 사실 합성방정식으로 대부분 해석되는 경우가 많습니다.
대표적으로 2019학년도 9월 가형 30번이 있습니다. 복잡해보이지만 (가)와 (다)를 합성방정식으로 처리해버리고 (나)에서만 합성함수 미분법을 들고 와주시면 충분합니다.
2019학년도 수능 가형 30번은 합성방정식으로만 접근하기에는 무리가 있습니다. 수학(하)의 합성함수 파트에서 속함수의 움직임을 따라 겉함수를 해석하는 방식을 배워와 그를 따라 문제를 접근하는 것이 편하다고 느꼈습니다. 복잡한 문제이지만 f(alpha_2)가 -pi/2를 넘기냐 넘기지 않느냐로 경우를 구분하면 한 쪽에서 모순이 발생해 편하게 답을 내실 수 있습니다.
물론 시작하자마자 'f(alpha_2)와 -pi/2를 비교하자'라고 생각이 들면 그건 천재인 것을 넘어 답지 본 사람이고요.. 하나씩 예시를 들어보고 상황을 단정지어보며 마치 귀류법에 따라 주어진 명제를 증명하듯이 하나씩 살펴보아가시면 충분하겠습니다.
수능 수학을 공부할 때는 깔끔하거나 화려한 풀이를 공부하는 것도 도움이 되지만, 웬만해선 시험 현장에서 내가 구사할 수 있는 기본적이면서도 단순한 풀이를 추구하시는 것이 좋다고 생각합니다. 저 또한 이 믿음 덕분에 인강이나 인강 컨텐츠 없이 2022학년도 수능에서 미적분 100점을 받아냈다고 생각합니다. 물론 시험 현장에서 예상했듯 만점자가 너무 많아서 멋이 덜해지긴 했다만... 더 어려운 시험이었다면 100점을 받아내었을 자신은 솔직히 없습니다 ㅋㅋ
전형적인 합성함수 개형 추론 문항, 2023학년도 수능 미적분 30번입니다. (가) 조건에서만 합성함수 미분법 넣어주고 (나) 조건은 합성방정식으로 해석해주시면 됩니다. 다만 0<x<3에서 1/2<f(x)<?임을 잡았을 때 방정식 sin(pi*f(x))=ln2를 만족하는 f(x)값이 7개가 되도록 하는 것이 상황의 핵심이기 때문에 기존의 맛과는 살짝 다르긴 합니다.
2022학년도 9월 미적분 29번도 전형적인 합성함수, 합성방정식 문항입니다. 위 문제들과 함께 살펴보시면 학습에 도움이 될 것이라 생각합니다.
그럼 8월 한 달도 다들 파이팅입니다!! 9월에 어떤 식으로 문제가 출제되는지 살펴보고 경향 참고해 수능 대비 잘 마무리합시다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 일반 오르비 유저 입장에서는 오르비 과외시장 확장판으로 생각해주시면 이해가...
-
좀 재질좋은걸로다가
-
@mylovelynicotine 감사합니다
-
ㅊㅊ
-
오르비언들끼리 0
공스타 하나요? 저도 해보고시픔
-
구구구구구구 3
내수학성적이니과외좀해다오
-
낼 쿠팡 짤린듯 2
6시 모집마감인데 아직도 연락이 없네 돈 벌어야 하는데...
-
중대 경영 경희 자전 15
경희대 자전은 국제캠이고요 중대를 가면 반수나 전과 샹각하고 있습니다 어디 가는 게...
-
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
헤어진지 한 달 쯤 되는데 가끔씩 너무 외롭네요 일상을 공유하고 기쁨과 슬픔을...
-
사탐 3
고2 11모 국2 수2 영3 생명 지구 내신 각각 4,3인데 사탐런 하는게 맞나요?...
-
시대인재 라이브 1
여름방학부터 시대인재 들을 것 같은데 라이브는 대기없이 신청만 하면 바로 들을 수 있는 건가요?
-
둘 다 노장학인데 어디가 좀 더 나음? 집에서 거리는 비슷함
-
T1 인터뷰) T1 김정균 감독 "스매시, 더 지켜봐야 하지만 교전 구도 잘 보는 선수" [LCK 현장 인터뷰] 0
Q : 스매시와 두 경기 호흡 맞췄는데 A 케리아 : 일단.. 일단 스매시 선수...
-
국영수 잘 되어있는지 물어볼 때 기준이 어느 정도임?
-
사설 같은게 대체 뭐임?
-
[ 24학년도 5월(고3) 21번 ] 최근 도형 기출문제 중 교육청 평가원 통틀어서...
-
연애못할거같아서그래 친구만나도할게없고 돈없어서
-
ㅇㅇ? 일단 적금은 다들 할거고 주식도 많이들 하려나
-
냥대 자원환경공이랑 서강 경영 중에 고민중인데 님들이라면 ㅇㄷ감요? 서강은 간판...
-
디저트 ㄹㅇ 미쳤음요
-
국어... 모의고사 풀어봤는데 경제지문 4개 다틀렸어요 ㅠㅠㅠㅠ 인문 과학 기술은...
-
의대다니는 사촌형이 알려준건데 6평9평 둘다 1떳는데도 첫수능때 국어 지문이...
-
1.제가 지금 고려대 수강신청 앱은 깔았는데 이게 학번이 필요하던데 신입생은 어디서...
-
ㅇㅇ
-
일본가서 그냥 여자들 다 홀리고 무쌍 찍던데 하 ㅅㅂ ㅠㅠㅠ
-
연애는 한 번도... 첫사랑이 아직 오지 않았나봐요
-
尹측 "선관위, 서버포렌식 등 검증 응해야"…재차 부정선거 의혹 제기 2
(서울=뉴스1) 노선웅 기자 = 윤석열 대통령 측이 윤 대통령의 계엄 선포 원인 중...
-
일본가고싶네 5
흐으으으으으음
-
ㄹㅇ
-
으흐흐흐ㅡ
-
요새 셐테기라 걍 오토오토만 돌리는데 위에껄로 돌려야되는데 밑에껄로 돌려서 이벤포...
-
수학 빨리 푼만큼 탐구를...
-
2층짜리 대형 카페에 제가 있을 예정입니다 옯만추 가즈아
-
졸려ㅠ 4
으악 카페인 수혈이ㅜ피료해ㅐㅡ러허우ㅜ....
-
풀어보실 분 있으신가요?
-
안녕하세요. 황성찬입니다. 저는 경희대학교 hospitality경영학부를 졸업하고,...
-
궁금해요
-
오늘의 착장 18
친구한테 칭찬들음 괜찮군
-
일본 4박5일동안 16
합쳐서 12만엔 넘게 써버렸네;;
-
윈터모 성적표 나온 지점 있음?
-
눈 빠지게 강의계획서를 찾아보는 당신을 위해_시간표 짜는 법.최종 0
대학커뮤니티 노크에서 선발한 동국대 선배가 오르비에 있는 예비 동국대생, 동대...
-
오랜만 11
본인 등장
-
뭐 고름?
-
김과외 고수구함 2
시급보냄 제안서에?
-
인하대25학번이 꼭 가봐야 할 인하대 교내 명소, 장소 소개해드릴게요! 0
대학커뮤니티 노크에서 선발한 인하대 선배가 오르비에 있는 예비 인하대생, 인하대...
-
김승리 정석민 고민중인데 오늘 비독원 듣고 정석쌤 너무 좋아짐.. 김승리 책은...
항상 감사합니다.
학습에 도움이 될 수 있다면 다행입니다!
f(x)=/=x은 무엇인가요??
f(x)가 x와 일치하지 않는다는 의미입니다, 등호에 작대기 하나 그은 부등호를 의미하고자 했습니다. 아마 공식 표기는 아닐테고 제 편의상 적었습니다!
아하 그렇군요 감사합니다
근데 우변이 0이 아니라 다른 함수여도 계산상의 문제 빼고는 별로 차이 안 나지 않나요? 특히 x인 경우는 특수해서 겉함수는 f(x)=x, 속함수는 f(x)=x+t 꼴 만족하는 게 실근이라 하나의 좌표평면에 그리기 쉬워져서 더 쉬울 거 같아요
f(x-f(x))=x 이면 f(x)=x로 이해할 수 없습니다. 예를 들어 x=1이 방정식을 만족할 때 f(1-f(1))=1에서 1-f(1)=1이므로 f(1)=2라고 단정지을 수 없습니다. 만약 f(1)=-2이고 f(3)=1이라 해도 x=1은 방정식 f(x-f(x))=x의 해가 됩니다. 만약 주어진 방정식이 f(f(x))=f(x)와 같았다면 겉함수를 f(x)=x로 볼 수 있었을 것입니다.
따라서 계산상의 문제도 문제이지만 본질적으로 다른 문제가 되어버린다고 생각합니다. 특히 f가 다항함수가 아니라면 더욱 그러할 것입니다. 이는 오히려 함수 f(x-f(x))의 그래프를 직접 그려서 우변의 함수의 그래프와의 교점을 비교하는 것이 합성방정식으로의 해석을 시도하는 것보다 편할 수도 있겠다는 생각도 듭니다!
아 그러네요 순간 착각했어요... 감사합니다!