이번 9모에서 유일하게 의미있는 문항
2024학년도 9월 14번이 참 잘 만들어진 문제라는 생각이 들었습니다!
처음 풀어봤을 때는 2023학년도 수능 21번의 하위호환이라고 생각했었는데
오히려 상위호환 혹은 아예 결이 다른 문항으로 바라보는 것이 더 적절할 수 있겠다는 생각이 들었습니다.
2023학년도 수능 21번의 경우 n=1, 2, 3, 4, ... 직접 대입해가며 약 10개의 상황에서의 각 그래프를 직접 그려보면 규칙을 발견할 수 있고 답을 낼 수 있습니다.
물론 머리 좋은 분들은 슥 보자마자 점근선과 x=0 근처에서의 극한값이 중요한 역할을 할 것이라는 점을 파악해 바로 답을 내셔도 좋습니다, 저는 그 정도 사고까지는 돌아가지 않아 직접 10개 정도의 자연수들을 대입해보며 예시를 들어보았던 기억이 있습니다.
2024학년도 9월 14번은 a, b에 적당한 수들을 몇 가지 대입해본다고 해서 바로 상황이 그려지진 않을 수 있다고 느꼈습니다. 물론 낯설거나 복잡한 문제 상황에 대해 예시를 들어보고 단순한 몇 가지를 가정해봄으로써 상황의 핵심을 파악하려는 과정은, 한완수에서 저자 이해원 님께서 말씀하신 바와 같이 의미 있는 행동일 확률이 크다고 생각합니다.
2023학년도 수능 21번은 그렇게 예시만 쭉 들어보아도 답을 낼 수 있는 문항이었는데, 2024학년도 9월 14번은 그렇지 않다는 뜻입니다. 이 문항은 지수함수를 평행이동한 함수들이 구간 별로 정의된 f(x)라는 주어진 함수가 주인공인데 실제 풀이 과정의 핵심은 지수함수의 그래프와 별 연관이 없다는 생각이 들었습니다.
네모 박스 안의 조건을 정리해보면 구간 (-inf, k]에서 f(x)가 지니는 함숫값들 중 정수가 몇 개인지.. 를 조사하라 하고 있음을 확인 가능. 구간 (-inf, -8]에서의 f(x)는 사실상 아무것도 결정되지 않았으므로 구간 (-8, inf)부터 바라보아봅시다.
x=-8에서부터 x값을 조금씩 키워가다보면... x=3에서 7이라는 정수가 들어오고 3<c<4인 어떤 상수 c에 대해 x=c에서 정수 6이 들어오며 x=4에서 정수 5가 들어옵니다. 이후 x값이 증가할수록 4, 3, 2, ... 이어서 정수들이 들어옵니다. 따라서 주어진 상황을 만족하는 정수가 2개인 범위가 k의 입장에서 구간 [3, 4)라는 것은 x의 입장에서 x를 조금씩 키워갈 때 구간 (-inf, 3) 까지는 정수가 2개이지 않다가 (-inf, 3]부터 2개, 그리고 쭉 2개다가 다시 구간 (-inf, 4]에서부터 2개이지 않다는 뜻입니다.
x=3일 때 정수 7이 들어오므로 우리는 x<3 어딘가에서 7이 아닌 정수가 존재했어야 함을 알 수 있습니다. 그 정수를 n이라 합시다. 그리고 x=c일 때 정수 6이 들어오므로 원래대로면 {7, 6, n}이 되어 상황이 성립하지 않아야 했을텐데... 성립합니다. 그 말은 n이 6과 7이 아닌 정수이면 모순이 발생한다는 뜻입니다. 그런데 n은 7이 아닌 정수이므로 n=6 확정입니다.
그럼 x=4를 지나 정수 5가 들어올 때 집합이 {7, 6, 5}가 되어버리고 x값이 더 증가해버리면 정수도 더 들어오므로 구간 (-inf -8]에서 정수 6이 걸렸어야함을 확인할 수 있습니다. x>-8에서 f(x)의 점근선은 y=8이기 때문에 -8<x<4에서 정수 7, 6 외에 f(x)가 지닐 수 있는 정수 함숫값은 없음을 확인하실 수 있습니다.
구간 (-inf, -8]에서 f(x)의 정수 함숫값에 6이 들어와야하는 상황은 다시 말해 6이 아닌 다른 정수는 절대 있으면 안됨을 의미합니다. 즉, 우리는 구간 (-inf, -8]에서 f(x)의 함숫값들 중 정수에 6만 들어오는 상황을 바라보고 있습니다.
x<-8에서 f(x)는 증가함수이고 y=b (b는 자연수) 라는 점근선을 지니고 있으므로 정수가 하나만 가능하다면 그것은 b+1일 것입니다. 따라서 b+1=6에서 b=5 확정입니다.
이후 증가함수라는 성질에 초점을 두고 생각을 이어가보면 만약 x=-8에 도달했을 때 6을 지나지 않았으면 모순이 발생하고 7까지 지나버리면 마찬가지로 모순이 발생하므로 우리는 다음과 같은 부등식을 떠올릴 수 있습니다.
따라서 a=8, b=5이므로 답은 13, 2번으로 결정됩니다!
정리해보면 2024학년도 9월 14번은 x>-8에서 f(x)가 감소함수이고 y=8이 점근선이며 x=3, c, 4, ... 에서 정수 7, 6, 5, ... 가 주어진 집합의 원소가 된다는 점만 파악했으면 이후 구간 (-inf, -8]에서 잡혀야 하는 정수 정리에는 지수함수의 그래프와 관련된 핵심적인 사고과정들이 딱히 들어오지 않았습니다. 물론 b가 자연수이고 x<-8에서 y=b가 점근선이라는 정보로부터 b+1이 6이 되어야함을 정리해낼 수 있었지만 2022학년도 9월 21번과 같은 기존의 전형적으로 출제되던 지수로그함수 그래프의 성질이 핵심적으로 작동하는 그러한 문항은 아니었다는 생각이 들었습니다.
이 글을 작성하며 다시 30문항 (미적분) 을 천천히 바라보았는데 개인적인 생각으로 14번이 유일하게 통합 수능 이후의 기출 문항들 중 이렇다할 직접적인 레퍼런스를 찾기 어려운 문항이라는 생각을 해봅니다! (다른 의견 있으시면 댓글로 꼭 공유해주시기 바랍니다, 감사드립니다)
p.s. 그렇지만 왠지 ebs 연계일 것 같은 생각도 드네요 ㅋㅋㅋㅋㅋ ebs 연계가 아니었고 이러한 문항들이 2개 정도 더 있었으며 17-18학년도 가형 킬러 문항 감성의 문항이 1-2개 정도, 준킬러 문항 감성의 문항이 2개 정도 있었다면 이번 9월 모의고사 시험지 정말 깔끔한 시험지가 되었을 것이라는 개인적인 의견이 있습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기차지나간당 8
부지런행
-
고전소설 진짜 한 20분 박았는데 3틀하고 멸망함 아침에 이거 줄거리까지 보고갔는데...
-
다 자셈 ㅇㅇ 7
난 안 잠
-
어느정도 반인가요? 시대 낮반보다 강대스투가 낫다는데, 이정도면 스투 가는 게 나을까요?
-
그래 뭐... 짜피 최초합은 물건너간지 오래인데
-
들어도 돼요? 고2때까진 감으로 1 맞았는데 고3 기출 푸니까 바로 85점...
-
떨치고 자야지 4
레어생각만하면 잠이 안와요
-
항상 행복하세요
-
제일 재밋어 이상태로 짝녀랑 대화하는것듀재밌옸는데
-
살면서 케이크 딱 한번 먹어봤는데(어릴때 알러지때매 안먹음) 커서 알러지는 나아져서...
-
둘이똑같음
-
잔치국수 땡김 2
요즘 잔치국수 파는곳이안보여
-
음 그걸로 구분하면 되겠군
-
찌이익
-
오르비 안녕히주무세요 13
-
ㅈㄱㄴ 전자융합도 전자과인가?
-
하긴 케잌위에 딸기는 다 이쁜딸기더라 못생긴 딸기가 더 맛있긴한데 옯붕이들같아
-
대충 무릎 벅벅 긁으면서 낙서하듯 그려본 그래프 개형으로 어거지로 문제 만듦 그러고...
-
방황이 길다..
-
암빠킹 스튜피드 3
스리핑 bye
-
(?)(?)(?)(?)(?)(?)
-
없는거 같음 내가 올해수능 잘봤으면 안 우울했을까? 현역때 잘 갔으면 안우울했을까...
-
그만큼 joat같을수가 없음 그냥 독학하러 가는 수업임 사실 이건 대학 수업 과반인...
-
다들자냐 0
난 잠이안오네
-
아싸 장학 100이다 ~ 대치도 기준 알려주면 좋을련만.. 장학 덜 주려고 내부기준 이러네
-
재입학 관련글 1
안녕하세요! 반수고민중인 06년생입니다. 최근 대학 재입학제도에 대해 알게되었는데...
-
칸나레어는 사지마세요..
-
전 키배도 못뜨는데 말재주도 없어서 다른 커뮤에서는 싸울 일 생길까봐 글 잘 못씀뇨...
-
홍익대가 나 떨구면 반수해야하는데 반수ㅈ망대비 전과도 해야됨 안정으로 쓰려고 과를...
-
작수 원점수 96인데 수학 유기했다가 오랜만에 서바 풀어보니까 개어려움요.. 서바...
-
굿바이 오르비
-
To.ㅎㅇㄷ 2
갓익대 나 붙여줘
-
ㄸ닥 0
ㄸㄷ
-
레전드곰보였는데 피부가 거의 정상인에 근접해짐
-
약간 깨달아버렷어 11
잘라그랫는데
-
상대가 부끄러워하며 좋아하는것이 티가 난다면 초진심 칭찬하는것도 되게 도파민이 나와...
-
크아아아아ㅏ아아아아아ㅏㄱ
-
다즈비펀치! 다즈비펀치!
-
gg.. 4
낼 풀자 찐 공간도형은 넘 어려웡..
-
ㅈㄱㄴ?
-
형도 자러간다 27
12만 덬 모으기 여행 떠나야지
-
캌테일 on 2
매수 ㄷㄱㅈㄷㄱㅈ
-
새터는 꼭 가라 13
술게임 ㅈㄴ 재밌다
-
어렵다 11
모든 변이 주어진 사면체 이거 개쉬워보이는데 왜케 어렵지
-
증거 왜 안깜 제2의 보현아니냐
231121보단 당연 상위호환,, 뭔가 조건에 맞는 상황이 직관으로 바로 안들어오고 어느 정도 관찰을 해야햇음
처음엔 어쨌든 지수함수 감성의 함수를 결정하는 문항이고 조건 하나 줬기에 차분히 살펴보면 된다.. 정도로 설명해 231121 하위호환이라 생각했는데 보면 볼수록 훨씬 깊은 추론을 요구하는 문항이라는 생각이 들었습니다. 오랜만에 출제된 옛 가형 혹은 더 본질적인 문항들과 비슷한 결의 문항이라는 생각도 들어요 (이러한 감성으로 24 수능이 출제된다면 기존에 ‘킬러 문항’이라 불리던 결의 문항들이 출제되지 않더라도 충분히 변별 가능할 듯? 21, 22에 이런 식으로 낸다면!)
동의하는 바입니다 ㅎㅎ 9모보다 주관식 좀만 더 어려웟으면 좋겟네요
그니까요 전 오히려 231121이 ㅈㄴ쉬었는데 이건 머 감도 못 잡음
저는 231121도 처음에 음… 하다가 n값 하나씩 대입해서 답 냈었는데 그건 전통적으로 ‘예시 들어 핵심 파악’하는 문항이었다는 생각이 들고, 240914는 221112나 221121처럼 보다 본질적인 사고 과정을 요구하는 문항이었다는 생각이 들어요
전 약간 보자마자 딱! 아이디어 떠오르길래…풀었는데 9모는 아직도 뭔가 긴가민가하네용
알 수 있는 곳부터 차분히 관찰했어야 했는데 정신없이 보다보니까 -8 이상은 아예 결정되어 있고 왼쪽을 적당히 조절해야 하는 문제 상황인 걸 깔끔하게 못 잡고 한 번에 정답상황을 결정하려고 하다보니 오래 걸렸던.. 피드백하면서 아직 한참 부족한 걸 깨달았던 문제였어용
생각 남겨주셔서 감사드립니다! 피드백 확실히 진행하여 채워가시는 모습을 보니 수능 때 좋은 결과 있으시겠네요 ㅎㅎ 응원하겠습니다
그래서인지 수학 문제를 관찰하는 시간을 더 들이는 게 중요해졌다고 느꼈네요.
통합 수능 이후 이러한 흐름이 거의 사라졌다고 생각하고 있었는데 이런 문항들이 강화되어 출제된다면.. 2021학년도 이전의 가형 시험지들을 더 꼼꼼하게 분석해두는 것이 도움이 될 수 있다는 생각이 들어요
걍 내신문제였어요.. 쎈이랑 일품에서 비슷한 유형 3~4번은 본듯
좋은 정보네요!! 쎈, 일품, 고쟁이, 마플 교과서와 같은 내신 대비 문제집을 적어도 2~3권 정도는 푸는 것이 수능 수학 공부에 도움이 된다는 주장에 힘이 실리겠습니다
그나마 9모에서 젤 괜찮다고 생각합니다. 다만 오른쪽을 아예 다 주는 만행을 살짝 과한 호의로도 볼 수도 있다고 생각해요.
저도 문제 다 읽고 '오 재밌겠다~' 했는데 x>-8에서 f(x)가 다 결정되어 있어서 '음?' 싶었습니다 ㅋㅋㅋㅋㅋ 올려주신 문항 아직 풀어보지 않았지만 이번 14번 대신 14번에 위치했다면 더 좋았을 것이라는 생각이 들어요
첫 인상은 왠지 2022학년도 6월 14번 + 2023학년도 수능 21번이네요!
이건 상당히 우아한 상황을 가리킵니다. 풀면 재미있으실겁니다.
보기와 다르게 빡세네요..
저도 첫인상이나 처음 슥 풀어봤을 때는 만만하다 생각했는데 천천히 풀이 논리적으로 작성해보며 설명하려고 해보니까 생각해볼 만한 부분 깔끔하게 담겨있는 재밌는 문제 같더라고요! 다시 살펴봐야겠지만 통합 수능 이후 문항들 중에 240914와 비슷한 사고 과정이 담긴 문항이 없던 것 같습니다
생각보다 안 풀리네 .. 하다가 풀리니까 딱 떠올리고 기분 좋았던 문제 !!
저도 2023학년도 수능 21번과 비교할 때 생각보다 안 풀리네.. 하다가 풀고는 '문제 좋다!!'라고 생각했던 것 같습니다. 생각 나누어주셔서 감사드립니다~~
이해원 s2 모고 (몇 회찬지 기억이) 21번이랑 문제 세팅이랑 핵심발상이 완전 똑같아서 9평때 풀면서 당황했어요ㅋㅋ
오 그랬군요!! 이해원 선생님 문항들은 모두 공부해볼 의미가 깊은 것 같습니다, 물론 모든 문항이 그럴테다만
안그래도 이 문제 다시보려 했는데 이렇게 정성들여 쓰신글이 있네용 감사합니다
도움이 되었으면 좋겠습니다 :)