26살에 재종반 수학 대표강사, 3년 간 30년 치 기출문제 폐관 수련 후기 2탄
1탄은
안녕하세요. 반갑습니다. 오르비 아이디에 등록한 전화번호를 개인적으로 사용할 수 없게되어 탈퇴했는데... 탈퇴하고나니 댓글이 많더라고요. 암살 당한것은 아닙니다. ㅎㅎ
2탄 시작합니다.
=====================================================================
[해설지가 뭐 이래...? 해설이 아니라 계산지 아닌가....? (feat. 수능 13번)]
2024학년도 수능 13번
도형 문제의 풀이는 연역적으로 풀지 않으면 항상 헤매게 되는 문제입니다. 그 이유는 기하에는 왕도가 없기 때문이죠?ㅎㅎ 운이 좋으면 풀리고 운이 안좋으면 안풀리고, 잘 보이는 날은 풀리고 잘 안보이는 날은 안풀리고...
그런데 수능 문제를 이런식으로 출제하지는 않겠죠? 운이 좋으면 풀 수 있있고 그렇지 않으면 풀 수 없는? 평가원에서 정해놓은 성취기준은 그런 것일리가 없습니다.
EBS의 해설을 보겠습니다.
갑자기 선분AC의 길이를 구합니다. 왤까요? 이 해설지는 사실 '해설'이 아닙니다. 문제를 해설하고 있는 것이 아니라 답을 향해 가는 풀이 또는 계산집이죠. 사실 선분AC의 길이를 구해야하는 이유를 설명하고 구하기 시작해야하는데 그냥 대뜸 구해버립니다. 그리고나서
S1을 구하고
Sin(각ACD)도 구하고, R도 구하고...
즉, 선분AC의 길이, Sin(각ADC), R을 모두 구해서 답을 냅니다. 이것은 아마도 답을 내는 과정이나 계획을 모두 다 마친 상태에서 연산하는 단계만 서술한 것이라고 보이는데... 그래도 조금 많이 이상합니다. 만약 둘다 구해야한다면 꼭 저런 모양(분자에 R 분모에 사인값)으로 구하라고 해야 했을까요?
다시 풀어 보겠습니다.
문제만 먼저 보면 원이 있고 그 안에 내접하는 삼각형이 있고 그 삼각형과 변 AC를 공유하는 각A가 60도인 삼각형이 있습니다.
맞나요? 고개가 끄덕여지시나요?
고개가 끄덕여 지면 논리가 꼬이기 시작합니다. 그 이유는 그림만 보고 나름대로 도형을 정의 했기 때문입니다.
이렇게 나름대로 정의 하면 작도하는 순서가 달라져서논리가 깨질 수 있습니다. 아마.. 헤매기 시작하겠죠?
문제 풀이의
첫번째는
문제 읽기 단계입니다.
도형 문제에서는 무엇보다 문제가 중요합니다. 그 이유는 도형이 어떤 순서로 정의 되었는가에 따라 구할 수 있는 것들이 결정되기 때문입니다.
이 문제는 처음에 사각형이 있습니다. 그 안에 대각선이 생겨 두 삼각형이 생깁니다. 그리고 그 중 하나의 삼각형의 외접원이 그려진 것입니다. 이해가 되시나요?
(아마 도형문제를 그림 먼저 보고 풀다가 안풀려서 문제 읽었더니 풀리던, 이런 경험있죠?)
두번째는
문제 설계 단계입니다.
1) 무엇을 물어 보았는가?
2) 단서를 이용한 조건의 해석
- 조건을 만족하는 식을 구합니다.
- 우선 S_2는 주어진 단서와 구하는 것을 보고 넓이를 나타내려고 한다면 선분AD*선분CD*Sin(각ADC)로 구하겠죠?
- 그리고 S_1을 구해야하는데 각과 길이 두개가 주어져 있으니 선분AC를 구해서 넓이를 구하면 되겠습니다. 이제 드디어 길이 AC를 구해야하지요.
(그전에 길이 AC를 구하는 것은 이상하죠? 만약에 주어진 정보만 가지고 아무 방향을 잡지 않고 구한다면, 길이 AC만 구하는 것은 이상합니다. 각과 길이 두개를 가지고 다른 각을 구할 수도 있는데 나머지 길이만 구한다고요?)
- 그럼 이제 조건을 표현해보면
- 일때,
를 구해야 합니다.
3) 이제 답을 내는 연산을 합니다. 조건을 해석했으니 이를 이용하여, 구해야하는 것을 재구성 해볼까요?
- R은 위에 구했던 선분AC와 각ADC로 찾을 수 있겠네요.
-
이므로 구해야하는 것은
이렇게 답을 내겠죠?
세번째는
답을 확인하는 단계입니다.
방법은 여러가지가 있습니다. 풀이를 역연산 해본다거나, 나온 답의 각과 길이를 이용하여 주어진 정보나 조건과 같은가 확인해 볼 수도 있겠습니다. 또한 다른 풀이를 찾아볼 수도 있습니다. 이 과정에서는 EBS의 풀이처럼 반지름을 구해서 역으로 확인할 수도 있을것입니다.
답지를 보기전에 이미 내가 맞았는가 틀렸는가를 알 수 있어야 시험장에서 만점을 받을 수 있습니다.
풀이를 다 하고 보면 단 한 번의 연산도 허투루 하지 않았습니다.
우리가 다양한 풀이를 추구하는 것도 좋은 공부겠지만 문제 출제의 의도에 맞게 풀이를 해야 과한 연산을 줄일 수 있을 것입니다.
논리적으로 풀고, 해야하는 기본적인 연산을 연습하는 것이
계산량을 줄이려고 새로운 공식을 늘이는 것보다 훨씬 더 유리하지 않을까요?
문제 풀기 전에 설계를 하고 풀이를 시작해봅시다.
문제풀이의 시간은 아마도...
생각하는 시간 | 계산하는 시간 |
1 | 9 |
2 | 7 |
3 | 3 |
문제를 어떻게 푸시겠습니까?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
컵으로 먹는거보다 밥그릇에 물떠먹는 게 더 맛있음 약간 약수떠먹는 그 느낌
-
역시 대 마 드 4
여러분!! 저 친구가 그 맨유의 희망이에요!!
-
입시에 무지했던 현역 때 친구가 하도 점공점공하길래 점프공익 줄임말인가 이상한...
-
고대 점공들어오라고 이3끼들아.
-
모아서 볼 수 있나오
-
예상 경쟁률보다 높으니까 개쫄리네 진짜 메디컬이면 좀 낙지좀 써라;;;
-
66명+ 연뱃받을 예정이신 1명 (화이팅!) 목표까지 남은 개수 34개
-
언제가 점공 5일차인지.
-
뭔일인지 정리 6
좀 부탁해여
-
ㅈㄱㄴ
-
단순 신고 누적으로 글이 내려감 어둠의세력들이 단체로 몰려와서 여론조작 가능
-
성장하고 나아갈 수 있는 해이길
-
개허수 현역 정시파이터 수학 학습법 알려주세여 ㅠㅠ 3
현재 예비고 3이고 고2 모고는 3-4 진동입니당 수학은 현우진쌤 시발점 수1 수2...
-
역사 질문받음 3
25수능 나무위키공부법으로 1등급 먹음 수특수완 문제만 1회독함 제발...
-
14시간 게임 10시간 취침메타라 울었어ㅜㅜ
-
차단목록 ㅇㅈ 11
소수정예엘리트집단입니다
-
25미적 100점보다 24미적 92점이 수학 더 잘하나요
-
반지름이 1인 원에 내접하는 사각형의 네 변의 길이의 곱의 최댓값을 구하여라.찍맞...
-
시대 재종 반 5
여러분 이 성적이면 시대 재종 어느 반 들어갈 수 있나여?? 목동 대치 반이 다를까요??
-
오르비에서 떡밥도 몬따라가는데 오프라인은 진짜 힘들어..
-
알려줘요
-
엉아야 17
과외 받을래? ㅎ.ㅎ
-
궁금쓰
-
어디서 싸움? 0
ㅈㄱㄴ
-
심심해요알려주시요
-
하루에 8시간 분량이라도 넘겨보고싶었는데 하반기에는 단 한번도 하지못함 이러니 내가...
-
ㄹㅇ
-
처음 해보는데 너무 재밌다
-
다들 화낫서...
-
설수의 정시면접은 걍 상식이 최소한도로 존재하는 사람이면 면접떨이 존재할 수 없는...
-
낮에는 코스프레부터 온갖 씹덕들이 판치는데 저녁만 되면 귀신같이 일진 포스 인싸들이 점령함 ㄷㄷ
-
배틀물 애니 특 0
중요한 회차에서 제작비 몰아쓰고 나면 그다음 회차는 눈에띄게 작화가 어색해짐
-
진짜 개힘든데 오후 5시부터 새벽2까지 단순노동만 반복하는데 너무 힘듬. 내가...
-
빨리 점공올리라고 시발 ㅋㅋ
-
그걸 해내네
-
a갤이 낫지
-
인하대 학잠 0
어디서 사요?
-
올리고 나서 10분 안에 팔로우 2명 늘었어 기뻐
-
공대남은 연애하기 개씹헬인것같음 걍 다녀보니 그렇게 느낌... 애초에 과cc자체도...
-
근데 진짜 긁히셨나봄뇨 16
아무쪼록 힘내셨으면••
-
진짜 어딜봐도 예뻐서 눈 둘 곳을 못찾았음…
-
현역이 ㅋㅋ 1
과탐을 하는데 1년만에 1 받은 사람들도 있나요? 있다면 머리가 비상해야만하는가.....
-
나 고3 4모때 불안증세 도져서 국어 한번호로 기둥세우고 8등급이었나 받음
-
성적ㅇㅈ은 많이했으니 1년 공부량이나 보고가셈
-
연애보다 7
애완너구리가 필요해…
-
지는 3만원짜리해주고 갖고싶은거 물어보면 위시리스트 있어ㅎㅎ ㅇㅈㄹ해서 봣는데...
-
이거만큼 가성비 좋은거 못봄
-
ㅇㅅㅇㅅㅇ ㅇㅅㅇ
풀이의 이유를 명확히 제시해주는 선생님이 정말 좋은 선생님이라고 생각해요
그런 점에서 쌤 응원합니다
감사합니다. 행복하세요!
잘 읽었습니다. 요즘 수능에서 준킬러라 불리는 것들은 깊은 개념보다는 빠른 상황해석을 요구하는 경우가 많더라고요. 한번 사고 회로가 꼬이면 10분 이상씩 잡아먹는 게 고민이었는데(어떻게든 풀어내도 딱히 수학 실력이 올랐다는 느낌은 안들더라고요) 방향성을 설정하는 데 도움이 되었습니다 감사합니다. ㅎㅎ
막무가내로 조건들을 수집해서 어떻게든 끼워맞추던 게 제 풀이방식이었거든요 ㅋㅋ 수학 고수들이 문제 풀기 전 먼저 생각을 하라는 게 이런 의미였다니...
도움이 되었다니 기분이 좋네요! ㅎㅎㅎ 문제를 풀이를 시작하기전 풀이 계획을 잡는 것에 고민하는 시간을 길게 가져보면 좋을것 같습니다.
개인적인 질문 드려도 괜찮을까요?
질문이야... 얼마든지요! 답변을 해드릴 수 있는 내용이라면 답변드리겠습니다.
국어강의는 누구 들으셨나요?
으ㅎㅎㅎㅎ
OBAR 해석법이네요
저렇게 읽어야 수학의 본질이 뚤리는데..
OBAR 해석법이 뭐에요?? 자세히 찾아보고 싶어요