Farewell[1] : 초전도치
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예상 경쟁률보다 높으니까 개쫄리네 진짜 메디컬이면 좀 낙지좀 써라;;;
-
66명+ 연뱃받을 예정이신 1명 (화이팅!) 목표까지 남은 개수 34개
-
언제가 점공 5일차인지.
-
뭔일인지 정리 6
좀 부탁해여
-
ㅈㄱㄴ
-
단순 신고 누적으로 글이 내려감 어둠의세력들이 단체로 몰려와서 여론조작 가능
-
성장하고 나아갈 수 있는 해이길
-
개허수 현역 정시파이터 수학 학습법 알려주세여 ㅠㅠ 3
현재 예비고 3이고 고2 모고는 3-4 진동입니당 수학은 현우진쌤 시발점 수1 수2...
-
역사 질문받음 3
25수능 나무위키공부법으로 1등급 먹음 수특수완 문제만 1회독함 제발...
-
14시간 게임 10시간 취침메타라 울었어ㅜㅜ
-
차단목록 ㅇㅈ 11
소수정예엘리트집단입니다
-
25미적 100점보다 24미적 92점이 수학 더 잘하나요
-
반지름이 1인 원에 내접하는 사각형의 네 변의 길이의 곱의 최댓값을 구하여라.찍맞...
-
시대 재종 반 5
여러분 이 성적이면 시대 재종 어느 반 들어갈 수 있나여?? 목동 대치 반이 다를까요??
-
오르비에서 떡밥도 몬따라가는데 오프라인은 진짜 힘들어..
-
알려줘요
-
엉아야 17
과외 받을래? ㅎ.ㅎ
-
궁금쓰
-
어디서 싸움? 0
ㅈㄱㄴ
-
심심해요알려주시요
-
하루에 8시간 분량이라도 넘겨보고싶었는데 하반기에는 단 한번도 하지못함 이러니 내가...
-
ㄹㅇ
-
처음 해보는데 너무 재밌다
-
다들 화낫서...
-
설수의 정시면접은 걍 상식이 최소한도로 존재하는 사람이면 면접떨이 존재할 수 없는...
-
낮에는 코스프레부터 온갖 씹덕들이 판치는데 저녁만 되면 귀신같이 일진 포스 인싸들이 점령함 ㄷㄷ
-
배틀물 애니 특 0
중요한 회차에서 제작비 몰아쓰고 나면 그다음 회차는 눈에띄게 작화가 어색해짐
-
진짜 개힘든데 오후 5시부터 새벽2까지 단순노동만 반복하는데 너무 힘듬. 내가...
-
빨리 점공올리라고 시발 ㅋㅋ
-
그걸 해내네
-
a갤이 낫지
-
인하대 학잠 0
어디서 사요?
-
올리고 나서 10분 안에 팔로우 2명 늘었어 기뻐
-
공대남은 연애하기 개씹헬인것같음 걍 다녀보니 그렇게 느낌... 애초에 과cc자체도...
-
근데 진짜 긁히셨나봄뇨 16
아무쪼록 힘내셨으면••
-
진짜 어딜봐도 예뻐서 눈 둘 곳을 못찾았음…
-
현역이 ㅋㅋ 1
과탐을 하는데 1년만에 1 받은 사람들도 있나요? 있다면 머리가 비상해야만하는가.....
-
나 고3 4모때 불안증세 도져서 국어 한번호로 기둥세우고 8등급이었나 받음
-
성적ㅇㅈ은 많이했으니 1년 공부량이나 보고가셈
-
연애보다 7
애완너구리가 필요해…
-
지는 3만원짜리해주고 갖고싶은거 물어보면 위시리스트 있어ㅎㅎ ㅇㅈㄹ해서 봣는데...
-
이거만큼 가성비 좋은거 못봄
-
ㅇㅅㅇㅅㅇ ㅇㅅㅇ
-
혼틈새벽ㅇㅈ 12
ㅇㅇ.
-
오래된 생각이다... 사탐런 여부에 따라 1~2급간 이상 차이날듯 최상위권아니면(이건잘몰름)
-
괜찮아 2
군대가면 연애생각안들겠지
-
외모가 중요하다는 가스라이팅에 당해서 아 나는 외모때문이야 이러는 케이스가 너무...
-
제발잠을자 !! 0
그래야내일공부를하지..
-
장거리+비용 많이 드는게 확정이긴한데 색다르고 재밌다 치바대 다니는 동갑이랑 1년째...
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼