241128(미) 수식 풀이
일단 "모든 양수 t에 대하여 x에 대한 방정식 f(x)=t의
서로 다른 실근의 개수는 2"라는 정보와 "모든 실수 x에 대하여
f(x)>=0"이라는 정보, 그리고 "실수 전체의 집합에서 연속인
함수 f(x)"라는 정보와 x<0에서 주어진 f(x)식으로부터
다음과 같은 상황을 떠올릴 수 있어야 한다.
대충 f(x)의 그래프가 x<0에서는 감소하고 구간 [0, p]에서는 (p>0)
상수함수의 그래프를 보이다가 x>p에서는 증가하는 상황
2015개정교육과정 상 정적분은 닫힌 구간에서
연속인 함수에 대해 논하므로
다음의 두 함수를 정의해주자.
그러면 함수 g(t), h(t)가 정의된 방식에 따라
다음의 두 항등식을 얻을 수 있다.
이를 이용해 닫힌 구간 [p, 7]에서의 적분에
치환을 섞어보자! (치환적분법, 역함수를 이용한 치환)
부분적분법은 두 함수가 곱해진 꼴의 함수를 적분할 때
하나를 미분, 하나를 적분한 새로운 함수를 적분하는 상황으로
적분 상황을 바꾸어주는 방법이다.
x>0에서의 f(x) 식을 아직 알 수 없기 때문에
f(7)값을 직접 구할 수는 없다.
하지만 주어진 관계식 2g(t)+h(t)=k (t>0) 을
활용해보면
x=7과 x=(k-7)/2에서의 함수 f의 함숫값이 일치함을
확인할 수 있으므로 x<0에서의 f(x) 식을 이용하여
f(7)값을 구할 수 있음을 알 수 있다.
이제 주어진 관계식을 이용해주면
구간 [0, f(7)]에서의 함수 p(t)의 적분값만 구해주면
주어진 조건식의 좌변을 정리할 수 있다.
구간을 표기할 때 [-3, 0]처럼 해야지 [0, -3]은 안된다고
알고 있긴 한데 편의상 이 정도는 넘어가자
중간에 d(4x^2)=8xdx는 그냥 내가 쓰는 표현인데
대충 미분(differentiation) 말고 미분(differential)에 관한
생각을 이어와 dy=f'(x)dx 표기를 살려
치환적분법 적용할 때 표기를 단순화하는 방법이다.
어디서 배운 건 아니고 치환적분 문제 풀다가 만들었는데
떠올리기 어려운 것은 아니라 사용하는 다른 분들께서 계실 수도!
이제 조건식의 우변에 위치한 정보를 살리면
k값 후보가 2개 나오는데 아까
h(t)=7일 때 g(t)=(k-7)/2이었고 g(t)<0이므로
k-7<0이다. 따라서 k=5로 확정된다.
답은 2번이다.
+ 아니면 2g(t)+h(t)=k (t>0)로 x>0에서의
f(x) 식을 직접 구할 수도 있는데
2g(t)+h(t)=k 와 f(g(t))=f(h(t))=t 적용하면
각 구간 별 식을 논리적으로 작성해낼 수 있다.
직관적인 상황 파악을 위해 h(t)>0로 표기했지만
f(g(t))=t 에서 g(t)<0이므로 2g(t)+h(t)=k,
h(t)=k-2g(t)에서 h(t)>k임을 바로 확인할 수 있다.
k=5 대입하면 함수 f(x)의 그래프는 다음과 같다.
그럼 바로 f(9)=2x(9-5)xe^(9-5)^2,
f(8)=2x(8-5)xe^(8-5)^2 구해 답 낼 수 있다.
++ 이상입니다, 다만 저는 개인적으로
이것을 대략적으로 생각해내서 t값이 조금 증가할 때
x<0에서 주어진 f(x) 식에 따라 g(t)의 변화를 생각하며
h(t)의 변화를 따라가보는, 그렇게 하여
x>0에서의 f(x) 식을 추론해보는 사고 과정이
현재로서 가장 현장에서 시도해볼 만한 사고 과정이라고
생각하고 있습니다.
읽어주셔서 감사드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 잘하는 법 0
문학을 사랑하고 세상을 보는 바른 눈을 가지면 됨
-
오야스미 0
네루!
-
간곡히 부탁드립니다. 21
https://youtube.com/@jang_jin_woo?si=8iaP1KsOZH...
-
심심함 0
진짜임
-
이걸 진짜 하시네
-
시마이 1
술끝
-
ㄹㅇ
-
제 이상형 6
1. 약함 2. 공부 좀 모담 (말 안 통하는건 안댐) 3. 겁 많음
-
닉변쿨돎
-
파일보관함이 어딨지.. 아이패드는 못보나요 ㅠㅠ
-
두비두비 다바다바
-
진짜 혼잔데 6
헤드셋 없이 인강 들어버려도 괜찮은거 아닐까
-
저는 0
-
사실 지금 스카임 14
ㅇㅇ
-
테드님 어디감? 1
ㅈㄱㄴ
-
말투가 계속 달라지네 어제까지는 이런 말투가 아니었는데 말이에요 어색해….
-
아 레어 사라고 2
사라고사라고...
-
오 눈 왔구나 2
오
-
알파피메일의 삶을 살수있음 ㅇㅇ
-
ㅎㅎ
-
무조건 부동산 방문? 직방으로 문의?
-
누가 인증했음? 8
ㄴㄱ
-
도라에몽좌 연전연승ㅋㅋ 11
-
호에엥
-
ㅇㅈ 4
귀여운 우파
-
어느 순간부터 파란색이 되어있어요 뭐죠 이게
-
몇개나 되심 보통? 본인은 10개 / 학잠포함 15개인것같은데 보통 10-15개 정도면 충분한가….
-
딸각
-
이대로면 솔직히 탄핵은 확정으로 보인다 차기 대권 지지율 1위를 달리고 있는...
-
에타 0
에타 합격자 인증할때 대학교 입학처에서 합격자 조회한거 스샷 찍어서 올리면...
-
만나봤는데 다 선남선녀들이었다
-
차단 딸깍 휴
-
이분마저 기만러인건 좀 화나네 진짜 기만러들이 몇명인거야
-
천조국 왔습니다 4
좋네요 여긴 오전 10시인데 한국은 새벽이죠?
-
걔좀 호감이옇는데
-
왜 인증메타냐 4
ㄹㅇ
-
바이바이 8
잔다리
-
돌이켜보니 참 이해가 안가는군
-
아스트레스받는다 0
이유는없음
-
해줌?
-
좀 아는건 술술 읽히네
-
정벽햄 ㅇㅈ사진 11
5만덕에 구해요 쪽지 보내주세요
-
배고파죽겟음 5
제육 볶아오셈
-
나도못봤는데 8
정확히 이수린 시즌2임? 몇시몇분에 일어남?
-
안녕하세요 롤스가 운(천부적 재능같은것),운의 대한 결과물에 대한 응분의자격이...
-
제곱근 자작문제 1
수학 모의고사 만들면서 만든 문제인데 완성도가 그닥 높지 않아서 공유합니다. 발문이...
와! 스텔체스 적분 아시는구나!
맞다 d(f(x))=f'(x)dx 이거 용어가 있었죠!! 잊고 있었네요 감사드립니다 형님
통일~연세~~
예전 23.11.22 수식 풀이 칼럼 정말 도움되었습니다 선생님! :D
도움이 되었다니 다행입니다! 231122 수식 풀이의 경우 제가 발견한 것은 아니고 어떤 의대생 분의 풀이를 보고 공부하다가 '오 이건 더 많은 수험생 분들께서 공부해두시면 좋겠다' 싶어 수식편집기 이용해 정리해보았을 뿐입니다.
수학적 재능이 없다고 스스로를 생각하는 사람으로서 항상 '멍청한 풀이'를 찾길 좋아하는데 231122에서 g(x)를 구하는 것만큼 1차원적인 사고로 답을 낼 수 있는 풀이를 아직 찾지 못했다 생각하여 요새도 심심할 때 식 전개해 구해보곤 하네요 ㅎㅎ
새해 복 많이 받으시기 바랍니다, 올 한 해도 행복한 순간들로 채워가셨으면 좋겠습니다!
+ 마지막에 g(t)값 변화에 따른 h(t)값 변화에 초점을 두어본다는 맥락에서... 현장에서 문항 처음 봤을 때 주어지 관게식 보고 y=-2x (x<0)와 y=x (x>0) 의 그래프를 그려보셨다는 다른 분을 발견했습니다!
확실치 않지만 t값 변화에 따른 g(t)값 변화, 그리고 그에 따른 h(t)값 변화를 살펴보아 x>0에서의 f(x) 개형 혹은 식을 대략적으로 유추래보라는 것이 출제 의도가 아니었을지 싶습니다.
마치 2023학년도 수능 22번이 평균값 정리에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세울 수 있었지만, 그냥 f(x)=x^3+ax^2+bx-3 두고 수식으로 밀어서 g(x) 식을 작성해낼 수 있었듯이
2024학년도 수능 미적분 28번은 항등식에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세워볼 수 있었지만, 그냥 주어진 정적분을 x=h(t)로 치환한 후 2g(t)+h(t)=k 이용, 그리고 다시 g(t)=x로 치환한 후 8x*e^{4x^2}를 치환적분을 통해 계산하여 k값을 결정할 수 있었던...
그러한 비슷한 맥락에서 바라볼 수 있지 않을까 하는 생각이 듭니다!