[알쓸신수] 1. 각변환은 미분이다
알아도 쓸데없는 신기한 수능수학..이라는 거창한 제목으로 시작해본 칼럼이긴 한데, 사실상 수능수학이라는 틀은 형식적으로, 내신과 수능 공부하면서, 이런저런 생각해본 이런저런 것들 함께 공유해보려고 가져왔습니다 :)
현역 허수 찌끄레기가 썼습니다..! 만약 틀리면 "반박시 너말이 맞음"이라고 생각해주시면 되겠습니다. 물론 도움되는 의견이나 훈수는 환영이에요 :)
===========================================================================
일단 무엇보다 "저는 각변환을 잘 못합니다."
작년 이맘인가 수1 삼각함수 단원 개념을 처음 접하면서 각변환이 뭐 이렇고 저렇고 얼싸안고 고민해봐도 헷갈려 죽겟고 짝수면 안바뀌고 홀수면 바뀌고 평면을 그려놓고 예각으로... 를 하면서 수1에 대한 정이 떨어지기 시작했습니다..
그러던 도중 알게된, 지금도 실전에서 제가 쓰는 방법 중 하나인 "각변환은 미분이다"에 대해서 소개해보려고 합니다.
그 전에, 삼각함수의 두가지 미분은 알고가야 의미가 있는 정리니까, 혹시라도 모르신다면 아래 2가지만 알아주시면 됩니다! (설마 모르진 않겠지만.)
===========================================================================
Theorem. 각변환은 미분이다!
증명은 삼각함수의 덧셈정리로 해주시면 됩니다. 여기선 생략할게요!
물론, 당연하게도, 저기서 sin이 cos으로 바뀌어도 당 당 당연히 성립합니다 ! (알파 대신에 알파 +1/2파이 넣어주면 되게쬬?)
안와닿을 수도 있습니다. 바로 예시를 들어볼게요.
===========================================================================
[풀이] 자, 여기서 위의 "각변환은 미분이다!"를 이용하면, 괄호 내부에서는 1/2파이가 빼지면서, 함수는 한 번 미분이 될겁니다.
sin의 도함수는 cos, cos의 도함수는 -sin임을 몰랐다면 조금 큰일이 날 수도 있습니다. 여기서, 위의 방법을 이용해서 한 번 더, 또 다시 한 번 더 미분을 때려서 원하는 각도를 만들어줄겁니다.
와우! 이러면 바로 답이 나오겠네요! 참쉽고 재밌네요 !
===========================================================================
[풀이]
평가원 문제입니다. 누구나 "각을 통일해본다"라는 생각은 당연하게도 드셨을겁니다.
첫번째 방법은, 이차항안이 -3/4파이니까, 1차항 안에 딱 -1/4파이라고? 한 번 더 미분하면 -sin x-3/4파이로 바꿀 수 있겠네!를 생각해볼 수 있겠습니다! 그러면 코사인 제곱을 피타고라스 정리로 유도된 s^2+c^2=1 식을 가지고 사인에 대한 식으로 표현해주면 되겠쬬?
또 다른 방법은, 제곱식의 안에서 1/2파이를 더해줘서 각을 통일해주는 방법이 있습니다. 이 때는 삼각함수를 역으로 적분해주는 방향으로 가면 되겠죠? 코사인은 사인으로 바뀌면서 괄호 안에는 1/2파이가 더해지겠네요.
꼴로 바꿔서 각을 통일해줄 수도 있겠습니다.
나머지 계산은 이차함수와 삼각함수의 합성함수로 보고 최대최소를 범위에 따라 따져주시면 되니 생략하겠습니다.
===========================================================================
Comment.
얼싸탄코 예각 사분면이 편하시면 그걸 추천합니다. 수학적으로도 그게 더 의미있습니다.
다만, 평소에 조금 훈련해놓으면, 기계적으로 시험장에서 머리속으로 미분미분미분 해서 수1 삼각함수는 모든 식을 정리할 수 있습니다. (물론 미적은 백번천번 덧셈정리입니다만).
하지만 최소한 저는 계산상에 있어서 많이 씁니당.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 0
아니 어젯밤에 인증메타였음? 알림뭐여ㄷㄷㄷ
-
상큼한 아침에 저게 뭐노...
-
현역 예체능 입시 망해서 재수 공부로 틀었음.. 초등학교때부터 예중예고 나와서 평생...
-
사문 질문 1
공유성은 특정 사회 성원이 공유하는 모든 후천적 행동 양식은 문화적 동질성에...
-
정답좀 알려줘 ..
-
..
-
갓셍살아야되는데
-
교수 쏘리.
-
왜 자꾸 117나오는거지…
-
사탐 뒤늦게 시작함. 생윤: 개념 한바퀴 돌리기 지루함. 처음엔 현자의 돌보다가 쌩...
-
ㅈㄱㄴ
-
얼버잠 0
다들 잘자요
-
오케이 인정 3
시발 문제 잘내네
-
수학문제가 안풀릴때마다 너무 분해서 집중이 안됨 오늘도 문제집 찢을뻔했는데 화를...
-
1조까지 옴..
-
졸피뎀중독걸릴거같아서 심한 거 아니면 참는중인데 진짜 스트레스
-
규칙적이게 해
-
-x 넣어서 빼는 것보다는 합성함수로 인식-> 양변 극소 동일함을 이용하는 게...
-
야식시킴 1
hoe
-
현실성은 없지만 만약 이거 뜬다면 나머지 개ㅈ박아도 성불할듯…
-
생명 실모 트레일러랑 한종철 풀어보신 분 계신가요!! 0
디카프 트레일러랑 한종철 철두철미 중 하나만 추천해주신다면 어떤게 좋을까요!...
-
빵굽습니다 0
-
잠안오네 조졌다 3
커피를 너무 먹었나...
-
남은기간 .. 정법 벼락치기로 .. 뭘할까요
-
걍 사설안할래 1
진짜 멘탈 ㅈㄴ 나감
-
괜히 사문했나 1
차라리 동사할껄 그랬나 사문 너무 많이 함
-
오늘부터 8
도서관에서 눈치 안보고 달려야겠다 오늘 계속 나도 모르게 후방주시하게 된듯
-
어릴적 꿈에 가득차서 열정적인 나는 어디가고 번아웃에 지쳐 왜 오르지 못하는가 왜...
-
시중에 푼 실모중에 제일 평가원같은듯. 문학 어려운데 답 근거가 명확하고 전반적으로 합리적인 느낌
-
개어렵네. 23분 걸려서 맞춤 역시 건너뛰길 잘했음
-
22번×12문제 0
아 오늘 참 열심히 공부한 듯 패드를 두고와서 인강도 못 듣고 양치기 바로 조지기 ㅋㅋㅋ
-
혹시 한국어가 좆망했을때를 대비
-
교육청 22번 풀면서 얻어가는 거도 많고 좋았는데 문해전시즌2도 비슷한가요??
-
이해원, 킬캠, 양승진모고, 김기현 컬렉션, 빡모 난이도 비교하면 어때요?
-
또 오랜만에 공부하네요 공부 20일도 안하고 시험 치겠네요 ㅋㅋㅋㅋㅋ 정신 못...
-
상황이해는 다 했는데 계산에서 망가짐 ㅍㅍ
-
밤새기 0
할게너무많은데.. 지금시기에 밤새는건 하는것만도 못한 행동이겠죠
-
국어 실모 ㅊㅊ 2
한 6개 파밍해야하는데 추천해주샤요 이감 파이널 12회 전회차랑 더프만 풀어봄...
-
지금 저의 제일 큰 문제가 수학이라고 생각이 드는데 전 통통이고 6모 수학...
-
예비고3이라서 가볼까하는데 고2후반부터 인강듣고 거의 혼자 했는데 독학...
-
하긴 할건데 가볍게 하고 넘어가는게맞을까요?? 올수보고 판단하면 되려나요
-
d-9 4
-
삐딱하게 살아 보려고 함 삐딱하게 살려고 마음먹으니까 괜찮아 다 괜찮아졌어
-
건대 공대가는거랑 취업에서 누가 더 유리함?
-
11덮 국어 3
풀기에 괜찮나요??? 저번주에 풀려고 했느데 저번주에 김승모 완전 망하고 또...
-
성격차이—-—- 남성양육비, 재산분할 남자의 외도——- 남성양육비, 재산분할 여성의...
-
20220722 4
이거 왤케 어렵지 다른 보통의 22번보다 더 어려운 듯 231122랑 난이도 면에선...
-
제보를 한답시고 pdf에 할X스를 담아 보내면 되지 않을까... 예를 들어 킬캠...
-
ㅇ 살려줘애줘 형만튀ㅛ면ㅇ다인? 아발아
저도 미분이라고 생각하면서 각변환했는데 저같은 사람이 또 있다는게 신기하네요ㅎㅎ