국어 비문학 자작 문제(3000덕)
국어 자작 비문학 기술.pdf
오늘은 비문학 중 기술 지문입니다
특히, 10번과 11번은 높은 수준의 추론을 요구하는 만큼 실제 이진법의 성질에 대해 고려하면서 푸시길 바랍니다
(11번 문제는 당연히 평가원이 이렇게 출제할 리는 없으나, 한계를 시험한다 생각하시고 푸시면 될 것 같습니다)
오늘 문제 중 특정 문제는 높은 수준의 추론을 요하고 있는 만큼 잘 생각해보시길 바랍니다
오늘은 어려운 만큼, 4문제 세트임에도 보상을 많이 드리도록 하겠습니다(가장 먼저 각 문제를 맞히신 분께 보상 지급합니다)
I. 2점 문제
8-400 XDK
9-400 XDK
10-1000 XDK
II. 3점 문제
11-1200 XDK
행운을 빌겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저도 이제 할머니네요
-
97 98 1 98 98 인데 지방약대 4~5칸 뜸..
-
그 수많은 밈들이 영상으로 어떻게 탄생될지 몹시 궁금함
-
1타강사가 미적만점자 700이하라고 인스타에 대놓고 올렸는데 그럼 현우진이 바보인거임..?
-
과탐 공부량 0
물1/지1 중에 노베기준 1등급 공부량 누가 더 많나요?
-
할거없다 1
지2 인강 들으러감..
-
실패수기 0
다시는 떠올리고 싶지 않은 기억이었지만 용기내서 글써봅니다..저는 지방에 살아서...
-
지금 오버워치 월드 파이널 시작했어요 옵치 리그 좋아하시면 보셈
-
유메 0
유메
-
동사는 일단 무조건할건데, 사문할지 세사할지 고민임 동사 세사가 시너지 좋다고하고...
-
맞팔하실분 0
헤헤
-
뭐함?
-
캬 2
-
컨설팅 할?말? 0
컨설팅 받고 가능성 높은 높과 쓰기(원하는 학과까지 가고 싶음) vs 컨설팅 없이...
-
기출 돌리고 삼극사기 사서 하는 것도 괜찮겠죠....? 일단 개념기출이 엄청 오래...
-
고려대 세종캠 약대 (지역인재) 경쟁률 64:1 미기확 다봄 미적 1등급 고정이고...
-
시작하기에 앞서 다 걸고 바이럴 아닙니다 ㅇㅇ.. 작수 독서 5틀 32m->올해 다...
-
<< 신 투투해야겠지?
-
이거보다 꿀일수가없음
-
재수 하려는 문과 학생이고, 올해 미적분으로 응시해서 선택에손 28 29 30...
-
캬
-
빙과 봇치 마녀의 여행 3대 레전드 결말 GOAT
-
2025 국어 언매 선택 원점수 91 97 97 백분위 99 96 99(추정) 인데...
-
라면먹고싶다 0
살찌니까참아야해...
-
수능 이때까지 3번봄. 중상위 사범대 다니는 중인데 메디컬 갈 생각으로 한 번...
-
대학 이름으로 드립을 치기 좋다는 건대 곧 훌리들이 몰려올 시즌이라는 건대 나한테...
-
과탐 탐구 선택 0
생1은 끌고 가고 지구과학은 도저히 못하겠어서 생2를 할려고 하는데 괜찮을까요
-
기상쌤 커리중 이것이 알짜기출이다 이 강좌 하면 따로 마더텅이나 자이스토리 기출 안해도 괜찮나요?
-
여자 기준이여
-
전자 쓰기엔 좀 힘들거같아서 자전으로 생각중인데 가능할까요?
-
46이라기엔 2점짜리 틀릴게 딱히 없었지 않나 14번이 3점짜린데 아무리봐도 45같은데
-
니말듣고두딸낳았대 니말듣고두딸낳았대
-
학과 잘못 고른 ㅂㅅ 취급 하긴 해 ㅋㅋ 메디컬은 신이 아니야 약은 그냥 뭐 할지...
-
도형 책 쓴다시길래 기대했는데 대학 생활이 바쁘신가 봄
-
고죠 사토루는 사실 살아있음
-
어차피 그 사이에 놀 것도 없고 놀아도 논 게 아닌 찝찝한 기분 이게 다 늘그니라...
-
외모 성격 성적인 거 같음. 맞는지는 모르겠지만. 동생 보니까 성격 + 성적 +...
-
이노우에야 안 돌아오냐 헌엑헌도 재연재하는데 에휴
-
이때 아니면 언제 이렇게 먹음
-
눈이 높아져서(?)
-
어디까지 지원 가능할까오
-
오다 센세는 원피스 완결을 어떤 식으로 낼까 역대급 용두사미가 될지도...
-
겁이난다… 50억 손해 입히고 “해줘“ 시전중…..
-
아플때 병원은 안가고 네이버 지식인 검색해서 원하는 답 나올때까지 돌아다니는거 그게...
-
생각보다 국수를 좀 못 보고 탐구를 잘 보신 분들이 많은 거 같음.. 6
저도 좀 그런 편이긴 한데 저랑 비슷한 성적대에서 특히 국수 3이나 4등급이신데...
-
용두용미 내놔
-
삼극사기 지금생각해보면 진짜 말도안되는 책이긴 하다 7
아는 사람은 아는 내용이었다지만 과장 좀 보태서 수능유형 하나를 죽여버림 저도 고2...
-
과외받아볼까
-
이라고 간판에 적힌 식당에서 환불을 요구해본 사람이 있을까
4454?
맞힌 문항: 9
400덕 드리겠습니다!
ㅠ.ㅠ❤️
8번의 4번의 경우, 17-9=8을 계산할 때
17=10001, 9=01001로 나타낼 수 있고 이를 계산할 때 왼쪽에서 두 번째 자리가 계산이 안 되는 문제가 발생합니다
따라서 최상위 비트(맨 왼쪽 비트)에서만 2를 받아내림하여 계산하면 됩니다
-10001-01001=01000
10번의 5번의 경우는 [A]에서 이미 비부호형 정수 이진법에서도 1의 보수와 2의 보수를 사용하면 음수를 표현 가능하다는 식의 진술이 있으므로 옳은 진술이라 볼 수 있겠습니다
1 4 1 5입니다~
되게 어렵게 출제한 지문이라 누가 다 맞힐까 걱정이었는데, 정말 미국님은 언제나 대단하십니다
특히 10번과 11번까지 잘 풀어내셨단 것에 대해서 놀랍습니다
보상으로 나머지 2600덕 드리겠습니다!
감사해용 ㅎㅎ
정답(마감)
정수 방식 이진법 (비부호형(unsigned) & 부호형(signed))이 아니라
실수 방식 이진법(고정소수점(fixed) & 부동소수점(floating))이 주제였으면
난이도가 걷잡을 수 없이 높아졌을 것 같네요 ㅋㅋ
8
① 동일한 개수의 비트 하에서 비부호형 정수 방식 이진법으로 나타낼 수 있는 최댓값은
부호형 정수 방식 이진법으로 나타낼 수 있느 최댓값보다 2배 더 큰 수이다.
--> 비트의 개수가 총 n개일 때
비부호형 정수 방식 이진법 : 0 ~ 2^n - 1
(000 ... 000 ~ 111 ... 111)
부호형 정수 방식 이진법 : -2^(n-1) ~ 2^(n-1) - 1
(111 ... 111 ~ 011 ... 111)
따라서 비부호형 이진법의 최댓값은
부호형 이진법의 최댓값보다 2배 더 큰수가 아님.
9
④ ㄱ(오버플로)과 ㄴ(언더플로) 모두 제한된 비트의 개수로 인한 이진법의 경우의
수의 한계와 숫자가 가진 무한한 특성 간의 괴리로 인하여 발생한다.
--> 표시할 수 있는 자릿수는 유한한데 숫자는 무한하므로 ㄱ, ㄴ이 발생할 수밖에 없음.
10
① 동일한 개수의 비트 하에서 1의 보수를 적용하면 일반적인 부호형 정수 방식
이진법을 통하여 도출 가능한 수의 최솟값보다 더 작은 값을 나타낼 수 있다.
--> 비트의 개수가 총 n개일 때
일반적인 부호형 정수 이진법 : -2^n ~ 2^(n-1) - 1
1의 보수가 적용된 이진법 : -2^(n-1) + 1 ~ 2^(n-1) - 1
( 000 ... 000 = 0, 111 ... 111 = 0 )
( 011 ... 111 = 2^(n-1) - 1, 100 ... 000 = -2^(n-1) + 1)
따라서 일반적인 부호형 이진법보다 더 작은 값을 나타내지 못함.
11
⑤ ⓐ(게임 종료 조건이 구동되지 않는 경우)의 상황이 구현되지 않을 때,
이 게임을 통해 얻을 수 있는 점수의 최댓값은 127점이고,
이 게임을 통해 도출가능한 최종적인 점수의 값의 모든 경우의 수는 131이겠군.
--> 8비트 부호형 정수 방식 이진법을 사용하므로 점수 최댓값은 2^7 - 1 = 127점
점수가 0 이상일 때 게임 종료 : 0 ~ 127점 모두 가능
점수가 0 미만일 때 게임 종료 : -1(잡초x1), -2(감자x1 + 독버섯x1), -3점(독버섯x1)
따라서 도출 가능한 최종 점수의 모든 경우의 수는 128 + 3 = 131가지가 됨.
10번의 1번 선지가 적절하려면 2의 보수로 바꿔주면 됩니다
예를 들어, 8비트 부호형 방식 이진법에서 -127은
1의 보수를 적용하면 10000000
2의 보수를 적용하면 10000001로 표현되는데
이때, 2의 보수에 한해서 1을 감하여 2의 보수가 적용된 10000000을 -128로 사용할 수 있게 됩니다
[A]의 (1의 보수)+1=(2의 보수)의 서술도 그냥 넘어가서는 안 됐었던 거였죠
조사할 때에는 정수 방식 이진법에만 주목했는데, 올인원님 말씀대로 실수 방식 이진법도 상당히 흥미로운 주제인 듯싶네요, 한 번 알아보도록 하겠습니다
항상 감사드립니다
대중의 통제는 무슨 의미인가요?
-> ‘과학의 민주화’
왜 대중의 통제가 필요하다고 파이어벤트는 주장하나요?
->패러다임은 과학자들만의 것으로 여겨지는 데, 이는 과학의 독재 즉, 민주성이 훼손되며 대중의 과학의 진보에 대한 기여를 무시하는 것이나 다름 없기 때문이다.