미분가능과 도함수연속성
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
ㅠㅠ 0
-
중앙대 논술 3번 11/26은 아무도 없나요?ㅠ 계산 실수 했나
-
4수하고 잡대 가고 남들 취직해있을 나이에 아직도 졸업 못하고 비전도 없음 여자...
-
현강 신청했는데 0
김범준은 따라갈 수 있을 지 자신이 없는데 인강을 듣는게 나을까요? 정병호 현강도...
-
7/13임 49/97임?
-
여캐일러 투척 1
이왜진
-
80명 고사실에 8명밖에 안 와서..
-
수학 그렇게 어렵게내면 변별은 되냐 한문제는 문제 읽고 바로 포기했는데 ㅋㅋㅋㅋㅋ...
-
내년되면 12
오르비에 07년생이 많아지겠군
-
바보 등장 6
-
아 ㅋㅋ..
-
수능끝나니까 0
의뱃들이 갑자기 왜 이렇게 다시 많아졌지
-
점메추
-
삼수하는데 지금 이거 2권만 사서 인강 안 듣고 해볼 생각입니다 인강은 나중에 끊을...
-
ㅇㅇ
-
수학을 못해서요 0
원점수 언매 95 확통 81 영어 2 사문 48 한지 50입니다 라인좀 잡아 주세요
-
내년 홍보책자에 ‘생명과학의 본질‘ 박아놓으심 ㅋㅋㅋㅋ 어 수능에 SRC나왔어~
-
친구의 친구라는 집합에 나라는 기호가 포함되어있는지의 여부를 스스로 알 수 있을까
-
팀원들 오르비 많이 보나유
-
이대논술 1
3시까지 입실인건가요? 시험 100분인데 시작시간이 언제에요..?
-
주제 뭐 나왔는지 알려주실 수 있을까요 모평균추정이라던가 벡터라던가
-
나는 양 6
귀여운 양띠
-
중앙대가 캠퍼스는 제일 예쁘네
-
수능 전전날에 ebs문학연계 슥슥 훑어보면서 메모지에 정을선전 배를밀며 오렌지...
-
난 배 해야지 8
-
언매 93 미적 95 영어 3 생1 96 지1 68 << 이ㅛㅐ끼 뭔데
-
중대확통 상경계 8
7/13 맞ㅇ요?
-
벡터같은 기하 내용도 배우나요? 진짜 몰라서 물어봄
-
부럽다... 현역으로 들어온 애들보면
-
이대 논술 1
쉬워서 실수했을까봐 걱정이다 ㅠㅠ 여러분들음 어떠셨나여 40분 남기고 다 적었는데…..
-
이대 답 5
1 ) 0, 파이/6 2a+b 2) 2025 3) 0,1 -2/루트e 딱 이 정도...
-
과탐 글 보면 9
화학: 하지마세요 물리: 하지마세요 생명: 하지마세요 +과탐 추천해달라는 글엔 사탐얘기 밖에 없군
-
한양 오전 0
답 이래 나왔는데 .. 몇개 맞나요
-
연대 과잠 입고 있는 사람 있던데
-
와…이건 다 맞아야지 가능하지 않을까요..
-
문이과 통합 했고 그 후에 과목별 중요도 비율이나 필수과목 등 설정하는건 대학 자율...
-
부럽다 젠장....
-
어떠셨어요 이번에 좀 쉬운듯 한데 저는 맨마지막 문제 답 여러개 중에 하나 못쓰고...
-
되는 가능세계존재하나요? ㅜ... 미적에서 4점 세개, 공통에서 4점 네개 나감
-
서울권 대학이라고 시설이 다 좋지는 않다는 것... 맨날 서울대만 놀러가봐서 그런지...
-
그런 건 없구요 그냥 게임을 영어로 하면 됩니다
-
과탐 선택 고민 3
이번에 지구 47 물리 47나왔는데 물리는 계속하는게 맞나 싶네요 한문제 찍맞도...
-
개빡치네 올해 본 모든 논술 사설 다합쳐도 이게 젤 어려움
-
186 -> 수학 문제 답으로 나왔었는데 겁나 아름다움
-
Team 2002년생들... 진짜 마지막으로 수능 준비완료 ㅇㅈ?? 군필, 6수, 메디컬
-
국어 강민철 영어 이명학 듣다가 나중에 조정호 현강 합류 수학 공통 안가람 미적...
-
누가 인기많나요? 남자한테
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=