[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅇ
-
화학 3
ㅏ 화학을 내가 왜 햇을까 퍼즐 씨발련
-
정말 조심스러운 예측이지만 핵불을 낼 것이라고 생각하지 않습니다. 평가원은 9월에...
-
이럴때 님들은 어케함? ㅠ 메가패스도 갖고싶은데
-
제 곧 내 핫식스 일부러 안먹는고 있는데 미치겠다
-
저기서 A,C가 y값이 같다는 걸 어떻게 알아낼 수 있나여.. 아 뭔말인지...
-
(가)에 진화론에 대한 옳은 질문 (나)에 순환론에 대한 틀린 질문 이렇게...
-
언확정법사문 백분위 92 98 3 94 97 고대 문과나 서성한 공대 가능? 감이 안오네
-
오즈모 전시즌 전회차 다 풀었고 식센모도 블/화 시즌1 다 풀고 시즌2는 1회차부터...
-
D-380 공부 2
-
수학은 근데 0
개념 노베랑 피지컬 노베랑 다름 초중딩때 열심히 수학 포기안하고 하고 고딩와서 저...
-
독감주사 0
몸 약한데 주사 맞을까… 며칠동안 계속 열기운 올라왔다가 약먹으면 가라앉고...
-
저만 듣기 어렵나요? 평소에 실모 칠 때도 1-2개씩 빵꾸낫던거 같은데 수완 실모...
-
내년 3월 교육청에서 11111 맞으면 심화반 복귀시켜달라고 쇼부보고왔어요....
-
[모의고사 무료 배포] 수학 팀 뫼비우스 모의고사 (공통+미적) 6
안녕하세요! 한국교원대학교 수학교육과 팀 뫼비우스입니다. 2025학년도 6월 9월...
-
수학실모뭐풀까요 0
강k 22 24 26 28 30 32 (짝수회차) vs 이로운 이해원 파이널 뭐풀까유
-
올해 수능으로 덕코 전재산 걸고 하자
-
솔직히 왜하는지 잘 모르겠음 정확하게는 기출도 제대로 안한 친구들이 왜 이걸...
-
약간 0
그냥 폰보다 이끌리듯이 잠들면 --> 정신적으로 지친 상태에서 잠드니까 깊은 잠을...
-
부탁입니다
-
고옥고옥하고울었어
-
내년, 내후년 더 봐볼까 싶은데, 여러분이라면 이 상황에서 만에하나 메디컬을 갈...
-
[속보]“北 파병 대부분 앳된 20대 초반…전투능력은 낮지않다” 0
국가정보원이 북한 군부 내 대표적인 ‘특수작전통’인 김영복 조선인민군 총참모부...
-
한지 커리 보니까 여러가지 되게 많던데 이개념이다랑 이기출이다 이거 두개만 사놓으면...
-
대성아 한번만 봐줘 빡스없어
-
지금 서점왕는데 머살까요?
-
문제도 잘 풀어야 하지만 선지도 제대로 봐야 함 문제 조건 다 제대로 분석해서 선지...
-
6모급이거나 그 근처
-
허수특 0
2주전에 순공 0시간인 본인임
-
난이도,오답률 순임? 2점이 3점보다 보통 쉬움?
-
허수 특:수학 3을 ㅈ으로 봄 139
요즘 큐브 답변하다가 속터져 죽을거같은데 최저런데 3은 받을 수 있겠죠? (실모 8...
-
31313
-
드릴 워크북 0
드릴5 드릴4 워크북 문제 겹치나요??
-
에라 모르겠다 0
에헤라디야~
-
올해 독서 끝내고 내년에 문학,화작하기
-
한 3회차분만 번장에서 구매 풀려고 하는데 괜찮나요?? 시리즈병로 다 잇던데
-
된다면 수시도 정지되려나요?
-
N티켓 3등급 중반 정도가 하면 얻을 거 많을까요?
-
진짜 머리 좋은 대학생들만 받아들이겠다는 의지가 보이는데... 수능은 손질다한...
-
확통선택자기준으로 수1,2,확통 수특수완 끝내는데 얼마나 걸리셨나요?
-
수학 0
기출 프린트해서 풀다가 확통 주머니에 공 원래4인데 화질깨져서 1로 보여서 그렇게...
-
국어6이긴한제 강기분 들어갈까요? 강기본은 너무 쉬울것같아서 ㅠ
-
김승모 2회 3
14,16,27틀 강의보면서 같이 채점했는데 27번보자마자 이마 탁쳐버림
-
08년생 드루와 10
나랑 계삭빵하자
-
나는 배가 고프다
-
국어가 이렇게 힘듭니다 여러분
-
공통 열심히하자.
-
ㅇㅇ 오죽 얘기할데가 없으면 학생.. 에이 설마 그런 강사가 세상에 존재나 하겠어요??
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ