[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그리고 40,45 너무 어려운데 어케함?
-
6모 23
올리셨잖아 한잔해
-
드가자
-
진심 너무 이쁘다
-
현역9모ㅇㅈ 4
이거 서강대는 애매하고 시립대쯤 갔으려나.. 추억이네여 이때 물리는 걍 말린건데...
-
성대 논술 1
합격자분이나 준비해보신분ㅜㅜㅜㅜ 있으신가요ㅜㅜㅜㅜㅜ 수논 개초보라 도와주세요 ㅜㅜㅜㅜ
-
아프진 않은데 만지면 뭉쳐있어요
-
26수능 반수 8
현재 대학교 2학년 04년생입니다. 일단 상황은 내신은 1.6, 현역23수능...
-
지금 이거 주면 받음? 12
-
오늘은 뭐하지 4
일찍 자는게 맞을까 자기엔 공부가 부족해서 걱정
-
그래도 최근에 공부 좀 열심히 하면서 공부랑 연이 아예 없는 줄 알았는데 그래도...
-
화작 2506 - 96점 / 이미 풀었던거라 논외 미적 이해원 시즌4 0회 -...
-
안녕하세요 오랜만에 왔어요 수능을 본지 7년이 지났지만 정신연령은 멈췄답니다 극심한...
-
최저는 그냥 맞춘 성적이고 독재 가게 되도 어거지로 찾으면 장학금 찾아지지...
-
23수능 정법 0
다시봐도 쉽지않네;;
-
씹갓 형님들 혹시 언매+독서론,문학,독서 각각 몇분 걸리시는지 알려주시면 감사하겠습니다
-
안녕하세요. 있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도,...
-
왜 안보내지노
-
비교 대조 0
공부하다가 갑자기 찝찝?한게 생겼는데 수능국어에서 말하는 비교와 대조는 항상...
-
이감은 도저히 이해가안됨 해설이 불친절해서 그런가 아님 걍 문제가 나랑 안맞아서 그런걸까
-
타에마나쿠 아오쿠 히카리오 네가우카라
-
국어 푸는 순서 0
화>독>문 으로 풀긴하는데 독서에서 과학 기술 을 안풀고 아예 마지막 푸는지문으로...
-
선착순인가요?? 잇올 교실형으로 다닐까 생각중인데
-
과분할 정도로 예쁘고 귀여운 친구가 있었는데 정시하면서 학교 가는거 진짜 ㅈ같은데...
-
오늘은 안녕 2
-
사덕이 천리고 사단은 그저 감정인 건가요
-
알면서물어봄 ㅇㅇ
-
다들 굿밤! 9
ㅎㅅㅎ)
-
레전드로 ㅈ됐다
-
하 맨날 수능 직전에 생일이어서 그런지 기분이 이상하네요ㅠ 다들 파이팅
-
상상 5-7 0
진짜 어렵긴하네 평소 상상보다 화작은 쉽게나왔고 문학은 뭐… 헬임 진심 등급컷 보니...
-
흠냐
-
ㅇㅈ 4
학점 ㅇㅈ
-
이거 진짜에요ㅡ
-
글 목록만 봐도 똥글 남발하는 놈이 갑자기 정의로운 정치가 빙의해서 중도적 생각을...
-
성적표 콜렉터라는 나쁜 말은 그만~
-
떨쳐내야지 2
후
-
★★★ 추천 phil0413 대성 19패스로 2026 수능을 향해 달려가봅시당!! 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 함께 2026...
-
현대소설은 암울한데ㅠ 내가 웹소설에 절여진사람이라그런가 고전은 난장판이라 재밌음...
-
제가 미적 선택자면 미적 시험지만 들어있나요? 아님 평소 모고처럼 다 있나여?
-
이성적 주면받냐 14
크아악 시-빨
-
평가원 2중-후 고정으로 나와요 대략 72-76 진동 기출 좀 부족한거 같아서...
-
아가 블부이 잘꺼임 11
네
-
오늘 공부 끝 1
생명 비유전 공부 좀 열심히 해야겠고.. 수학 양을 좀 늘려야겠음..
-
뭐 폰쓴다고 해봤자 별거안하는데 그럴바엔 16을사고 용량을늘리는게
-
공자를 좇잡다 4
좆잡다 졷잡다 모두 발음이 같네요
-
3m같은건 오래 끼면 아프더라구요.. 그래서 좀 가격 나가더라도 괜찮은걸로...
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ