메인글 문제 해설 완전판
합 S 곱 T
1. B가 “자신있게” <응너모름>을 외치려면, B가 가진 “합”은 두 소수의 합으로 표현되어선 안 된다.
(거의 사실이라고 알려진) 골드바흐 추측(*2보다 큰 모든 짝수는 두 소수의 합으로 표현할 수 있다)
에 의해, S는 홀수이다. 두 수의 합이 홀수라면, 두 수의 곱은 반드시 2를 인수로 가지므로 합인 S는 2x소수 꼴만 아니면 <두 소수의 합으로 표현될 수 없>다. 따라서 가능한 S의 후보군은 <홀수 중 소수+2가 아닌 것들의 집합>이다. 이 집합을 P라고 이름짓자.
좀 디테일하게 가보자면, 가능한 ”합“ S의
집합은 P{11,17, 23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,93,95,97}일 것이다.
2-1. C는 처음에 답을 몰랐으므로 T(곱)의 약수는 6개 이상이다.(...ㄱ)
2-2
C는 B가 외친 “응너모름”을 듣고 답을 알았으므로,
C가 알고 있는 T에 대해서 < T에 대응하는 모든 순서쌍을 관찰했을 때, 순서쌍에 대응하는 S들 중 딱 하나만이 P에 속했을 것>이다.
우선, P에 속하는 S가 존재하려면 T는 홀수여서는 안 된다(...ㄴ, T가 홀수면 쪼개서 더했을 때 짝수-> P에 못 들어감)
따라서 T는 약수 6개 이상인 짝수여야 한다.
또, P는 전부 홀수이므로 T(곱)을 두 수의 순서쌍으로 쪼갤 때 둘의 합(S)이 홀수이려면 T가 가진 모든 2를 한쪽에 몰빵해야 한다.
위와 같은 규칙으로, 가능한 T의 집합인 Q를 구할 수 있다.
3. B는 C가 ”알겠다“는 이야기를 듣고 답을 알았다. 이는 곧 B가 S를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중 Q에 포함되는 것이 단 하나 여야 한다는 얘기다.(Q의 정의는 윗 댓글 참고)
이때 핵심 아이디어가 등장한다. <2를 몰빵해야 함>에서 아이디어를 얻어 보자
만약 S가 4+p1으로 표현되면서 동시에 8+p2로 표현된다고 하자. (단 p1,p2는 소수)
그렇다면, 위 문단을 참조하면
<모든 순서쌍에 대응하는 T들> 중 Q에 속하는 T가 적어도 4p1, 8p2로 벌써 두 개가 되어 버린다. 따라서 P의 원소들 중 저렇게 표현되는 S들은 답이 될 수 없는 것이다.
이는 16,32,64에도 마찬가지로 적용된다.(*S는 2+p로 표현되지 않음을 처음에 얘기했으므로 이 경우는 제외 가능)
따라서, P{11,17,23,27,29,...95,97}에서, 2^@ + p 꼴(2<=@<=6)로 표현되는 경우의 수가 두 가지 이상인 P들을 모조리 제거할 수 있다!
이를 모두 제거하고 남은 집합을 P'이라고 하자. 그렇다면 P'는 {17,29,41,53,59,89,97} 이다.
(제가 노가다했습니다 믿어주세요ㅠㅠ)
이제< P'의 원소에 해당하는 S>를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중, Q에 속하는 것이 1개가 아닌 경우만을 제거하면 된다.
Q에 속하는 T를 나열하는 것은 비직관적이니, “곱이 Q에 포함되도록 하는 순서쌍“을 S를 기준으로 하여 나열하자.
(두 개가 되는 순간 더 세지는 않았습니다.)
S=29: (2,27) (4,25)
S=41: (4,37) (16,25)
S=53: (16,37) (40,13)
S=59: (16,43) (4,55)
S=89: (16,73) (64,25)
S=97: (8,89) (16,81)
S=17: T가 Q에 속하는 순서쌍이 (4,13) 하나로 유일함.
따라서, “두 수의 합”이 100 이하라는 전제 하에서는 (4,13)만이 유일하게 가능한 순서쌍임이 증명되었다.(범위고려안해도 유일한 해인지는 모르겠네요)
0 XDK (+3,000)
-
3,000
-
6-8에 잘나와서 입꼬리 승천된 상태로 시험 봤는데 엄.. 화작이 평소 이감에...
-
막상 진짜 불 터지고 나서 웃고 있을 사람이 얼마나 될까 적당히만 내줘라 제발
-
ㅇㅅㅇ
-
의대 증원이나 모집 정지 여부와 상관없이 올해 한의대 컷은 올라갈 확률이 큰가요?
-
수능끝나고 고민해 수능결과가 나와야 고민이 의미가있을거아녀 지금은 수능도안봤는데...
-
ㅈㄱㄴ
-
한번더 기기변경하면 또 정지당함??
-
시발 이게 드립이아니라 대통령실에서 나온다는게 존나웃김 ㅋㅋㅋㅋㅋ 디시나 오르비에서...
-
원래 비환급형 걍 사려했는데 없어진건가
-
수능 1컷 궁예 2
언매 91~92 수학 84 경제 45 정법 47
-
언매 1컷 86점 단어문제 하나 틀리면서 94점 1등급 킷타킷타!!!!! 꺄 쵸-고점 갱신했다요!!
-
ㅅㅂ
-
화작에서 3개틀리고 폭사 ㅅㅂ
-
아니 바로 윗층 헬스장에 줌바댄스반이 생길줄 알얐냐고ㅜ 덕분에 기합 들을 때마다...
-
원래 평가원 한해에 같은 작가도 2번 출제 안하나요?? 4
이건방금앎
-
상위권들이 의대안쓰니까 그대로 밑도 다 좆되는거아님?ㅅㅂ
-
문학 조언좀요 2
문학 비문학 둘다 시간은 적당히 (각각 20~25분컷) 걸리는데 비문학 정답률은...
-
문학 질믄 7
보기에서 우활을 지켜나가는게 화자의 가치관 추구?인데 5번선지에서 우활을 떠나보낸...
-
의대증원 유지하는 희망회로 기화하는 시나리오는 없나
-
머릿속으로 아파트아파트 재생되는대 어떡하냐 수능에 해당 소재 나오면 뛰어내린다
-
9모때 나왔었나??
-
9월 말로 돌아간다면 뭐 선택할거임? 두개다 풀어보신분 전 간쓸개
-
현실에 저런사람이 진짜 있을까?
-
진짜 너무 귀엽다... 쪼매난 애기들이 ㄹㅇ 미래다..
-
강 한 사람이 이기는 것이 아니라 걍 하는 사람이 이긴다.
-
ㅠㅠ 또 나만 어렵지..
-
1130~0600 해볼까
-
드릴 워크북 다른거 다풀고 미분적분 파트만남았는데 너무 어려운데 마무리 하는게...
-
23수능 0
언매 91 확통 97 영1 사탐1 96 사탐2 86 이면 고대 낮과 가능했?
-
ㄹㅇ 책 가져와달라고 할껄...
-
그냥 김승모중엔 1회랑 3회가 넘사라 그렇지 이감상상이랑 비교해서는 그래도 김승모...
-
발췌하니까 몇개 놓치는게 있어서 글도 쉽고 별로 안길어서 비문학 풀듯 푸는데 저만 일케 품?
-
아침 7시에서 8시 반으로...씁
-
어제 정신병 터져서 아빠한테 못하겠다고 질질 짜다가 혼났는데 그대로 2시간 울고 푹...
-
찐따+ENFP 2
최악의 조합
-
중학생때 봤던 건데 요즘 애들은 이거 잘 모르겠지...
-
반박 안받음
-
4시간 자고 보는 이감
-
일단 맘이 편함 나랑 사고회로면에서 좀 달라서 좋음 차라리 F보다 T가 편함 ㅠ
-
아니 풀수는 있게해줘야지.. 오히려 옥린몽이나 그런게 더 쉽고 복합에서 그냥 뻥…...
-
누가 좋은가요??? 정석민t 들을려고 했는데 문법강좌밖에 없네요
-
굿모닝 2
-
9등급통통이라우럿서
-
짐 정리하다가 3
수완 수학 한 1/3정도 안푼거 발견했는데 걍 후딱 풀까말까
-
그래도 적당히 보낸건가...?
검산한번더했다...
맞는거같나용
가독성은 별로인듯...
잠을 못 자서 신뢰하실 만한 컨디션은 아닙니다마는
완전히 이해했고 계산실수만 안 하셨으면 옳은 것 같습니다
다만 댓글에 관한 내용은 메인글에 쓰신 내용을 말씀하신 건지
복붙이슈네요 ㅎㅎ 확인했슴당
혹시 예전 닉네임이 대학어디가지 셨나요?
수학 잘 설명하셨던 기억이 있어요
어 네 맞아요! 되게 예전 이름인데 기억해 주시네요 감동입니다 ㅎㅎ
항상 글 잘 보고 있습니다!