메인글 문제 해설 완전판
게시글 주소: https://orbi.kr/00069010568
합 S 곱 T
1. B가 “자신있게” <응너모름>을 외치려면, B가 가진 “합”은 두 소수의 합으로 표현되어선 안 된다.
(거의 사실이라고 알려진) 골드바흐 추측(*2보다 큰 모든 짝수는 두 소수의 합으로 표현할 수 있다)
에 의해, S는 홀수이다. 두 수의 합이 홀수라면, 두 수의 곱은 반드시 2를 인수로 가지므로 합인 S는 2x소수 꼴만 아니면 <두 소수의 합으로 표현될 수 없>다. 따라서 가능한 S의 후보군은 <홀수 중 소수+2가 아닌 것들의 집합>이다. 이 집합을 P라고 이름짓자.
좀 디테일하게 가보자면, 가능한 ”합“ S의
집합은 P{11,17, 23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,93,95,97}일 것이다.
2-1. C는 처음에 답을 몰랐으므로 T(곱)의 약수는 6개 이상이다.(...ㄱ)
2-2
C는 B가 외친 “응너모름”을 듣고 답을 알았으므로,
C가 알고 있는 T에 대해서 < T에 대응하는 모든 순서쌍을 관찰했을 때, 순서쌍에 대응하는 S들 중 딱 하나만이 P에 속했을 것>이다.
우선, P에 속하는 S가 존재하려면 T는 홀수여서는 안 된다(...ㄴ, T가 홀수면 쪼개서 더했을 때 짝수-> P에 못 들어감)
따라서 T는 약수 6개 이상인 짝수여야 한다.
또, P는 전부 홀수이므로 T(곱)을 두 수의 순서쌍으로 쪼갤 때 둘의 합(S)이 홀수이려면 T가 가진 모든 2를 한쪽에 몰빵해야 한다.
위와 같은 규칙으로, 가능한 T의 집합인 Q를 구할 수 있다.
3. B는 C가 ”알겠다“는 이야기를 듣고 답을 알았다. 이는 곧 B가 S를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중 Q에 포함되는 것이 단 하나 여야 한다는 얘기다.(Q의 정의는 윗 댓글 참고)
이때 핵심 아이디어가 등장한다. <2를 몰빵해야 함>에서 아이디어를 얻어 보자
만약 S가 4+p1으로 표현되면서 동시에 8+p2로 표현된다고 하자. (단 p1,p2는 소수)
그렇다면, 위 문단을 참조하면
<모든 순서쌍에 대응하는 T들> 중 Q에 속하는 T가 적어도 4p1, 8p2로 벌써 두 개가 되어 버린다. 따라서 P의 원소들 중 저렇게 표현되는 S들은 답이 될 수 없는 것이다.
이는 16,32,64에도 마찬가지로 적용된다.(*S는 2+p로 표현되지 않음을 처음에 얘기했으므로 이 경우는 제외 가능)
따라서, P{11,17,23,27,29,...95,97}에서, 2^@ + p 꼴(2<=@<=6)로 표현되는 경우의 수가 두 가지 이상인 P들을 모조리 제거할 수 있다!
이를 모두 제거하고 남은 집합을 P'이라고 하자. 그렇다면 P'는 {17,29,41,53,59,89,97} 이다.
(제가 노가다했습니다 믿어주세요ㅠㅠ)
이제< P'의 원소에 해당하는 S>를 가지고 만들어 놓은 순서쌍에 대응하는 T들 중, Q에 속하는 것이 1개가 아닌 경우만을 제거하면 된다.
Q에 속하는 T를 나열하는 것은 비직관적이니, “곱이 Q에 포함되도록 하는 순서쌍“을 S를 기준으로 하여 나열하자.
(두 개가 되는 순간 더 세지는 않았습니다.)
S=29: (2,27) (4,25)
S=41: (4,37) (16,25)
S=53: (16,37) (40,13)
S=59: (16,43) (4,55)
S=89: (16,73) (64,25)
S=97: (8,89) (16,81)
S=17: T가 Q에 속하는 순서쌍이 (4,13) 하나로 유일함.
따라서, “두 수의 합”이 100 이하라는 전제 하에서는 (4,13)만이 유일하게 가능한 순서쌍임이 증명되었다.(범위고려안해도 유일한 해인지는 모르겠네요)
0 XDK (+3,000)
-
3,000
-
사탐 기출문제 0
6평 전까지 투사탐 기출 2회독 할려하는데 사탐은 펑가원 기출만 봐도 충분하겠지??...
-
수학 14 21 22 29 30 틀 14번은 공통접선인거 알았는데 f'(1)=1인거...
-
맨더비인데 곧 지겠네 로드리홀란없고 포든은.. ㅣㅜ좋아했다
-
지금 180임
-
ㅈㄱㄴ
-
어떻게 함??
-
힌트를 드리자면 공간을 그 자체로서 다루는 능력 이게 중요합니다 공벡아니고 공도
-
공부 못하던 시절에 스카이 이상 다니는 사람은 진짜 다른세상 사람인 줄 알았는대...
-
재수생익고요 지구 세지하다가 지구 버리고 사탐런 하려는데,국어를 좀 치는 편이긴한데...
-
이제 수1 기출좀 돌리려고 하는데 너기출이 먼저인가요 어삼쉬사가 먼저인가요
-
힌트:치킨
-
재밋는 기하
-
난도 어떠신가요 그리고 평가원이나 작수 보신 분들은 그 시험들에 비한 상대적 난도는 어떤가요
-
[속보]4·2 재·보궐선거 결과 민주당 ‘승리’…국힘은 TK 텃밭 사수 4
윤석열 대통령 탄핵심판 선고를 목전에 두고 실시된 4·2 재·보궐선거가 야권의...
-
ㅈㄴ웃기네 2
개귀엽노 이거
-
왜 다들 n제냐 2
난 아직 실전개념 중인데 ㅜㅜ
-
밥 간단히 먹고 공부하는분들은 살 많이 빠지시는거같던데
-
에이 대치동 어둠의 스킬은 강기원이 아니라 배성민이지 1
16차원 함수찢기더블프리즘...
-
우우..
-
통통이고, 3모는 21 실수하고 22 넘겨서 92점 받았습니다. 방학동안...
-
캬캬
-
늦긴했지만 파데 수상하끝내고 수1/2 파데 킥옾 오늘 들어갔는데 킥오프 문제들이...
-
재수생입니다 작년과탐 성적은 11입니다 과탐 50 50 맞고 과탐 가산 3퍼 받으면...
-
자야하는데 0
흠 놀아야지
-
(1+2+3+4+5+6+7+8+9)^2=2025
-
패션고자 ㅇㅈ 12
옷 어떻게 입는게 좋을까요
-
이제 봄이 오고 있습니다 ㅎㅎ
-
전 누님들한테 0
잘생겼다 말고 귀엽다는 말을 훨씬 많이 들음 내 나이 듣고 너무 어려서 아쉬워 한...
-
https://m.dcinside.com/board/dcbest/292946...
-
되는 지문 최근수능에 있긴 하나요?? 문학은 가급적 전문까지 회독하려고 하는데...
-
2018년부터 오르비를 해야 됐어 까비다노
-
공부하실때 샤프에 샤프심 몇개넣고 공부하세요..?
-
유리아씨 근황 7
-
문학에서 시간 너무 쓰는것 같은데... 어떡하면 2등급에 안착하게될까요ㅠㅠ
-
역시 난 마스터자격 실격인가바
-
https://youtu.be/ZV5RrZI3ET8?si=_l8D1cThyc768J2...
-
학벌컴플렉스때메 미치겠음
-
이시발테슬라 2
숏들가니까개쳐올라가노
-
졸리네용 2
다들 오늘 하루도 수고하셨고 내일은 더 열심히 살아봐요 .. !! \● ●_ \●...
-
ㅈㄱㄴ
-
반지름이 r인 원 O와 점 P가 있을 때, PO^2-r^2의 값을 점 P의 원 O에...
-
푸아앙
-
잔다 9
안녕히 주무세요
-
자러가요 9
요가러자
-
뭐야뭐야 2
오늘도 ㅇㅈ메타인거야?
-
그냥 샤프랑 볼펜으로 필기한거 올려도 되나요?
-
두번 세번 보면 널 더 안고 싶어 너와 커플링 커플링 손에 끼고서 함께 이 길을 걷고 싶어
-
아... 야동서독 옹 어째서 기만 메타의 역사는 쓰지 않으셨사옵니까 따흐흑......
-
오랜만에 오르비 0
ㅎㅎ
검산한번더했다...
맞는거같나용
가독성은 별로인듯...
잠을 못 자서 신뢰하실 만한 컨디션은 아닙니다마는
완전히 이해했고 계산실수만 안 하셨으면 옳은 것 같습니다
다만 댓글에 관한 내용은 메인글에 쓰신 내용을 말씀하신 건지
복붙이슈네요 ㅎㅎ 확인했슴당
혹시 예전 닉네임이 대학어디가지 셨나요?
수학 잘 설명하셨던 기억이 있어요
어 네 맞아요! 되게 예전 이름인데 기억해 주시네요 감동입니다 ㅎㅎ
항상 글 잘 보고 있습니다!