저도 무물보
수험생일 때는 무물보 글 보이면 할게 얼마나 없길래 이런걸 올리나부터 생각했는데
제가 그 할게 없는 사람이 되었네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔직히 물1,화1 선택자는 가산점을 더 주는 게 맞다고 봅니다. 7
자연계나 공대 가선점이 지금도 대개 있긴 하지만, 이것도 너무 부족합니다. 특히...
-
게시글 모아보기 프사 라인업 봐라 ㅋㅋ 십덕이 세상을 지배한다
-
지금까지 다른학교 준비하느라 준비 못했는데 지금부터라도.. 어떻게할수잇나요?ㅠㅠ...
-
여자랑 대화 나눠본적도 없는데..
-
물리 강사한테 문제 들고갔더니 자꾸만 내 허벅지를 쓰다듬는거임뇨 자꾸 야추에...
-
닥터페퍼도 좋아해요
-
글씨체 과외는 어디 없나
-
고해성사 3
중학교2학년때 수능갤러리눈팅이취미
-
답도 다 맞았다는 가정하에.. 합격자 평균점수 보면 80% 정도만 맞춰도 그냥 붙는...
-
싸움꾼의 호흡 제 1형 《저격아님》 제 2형《순수하게 궁금해서》 제 3형 《아니...
-
맘스터치 갔다가 허거걱 역시 허윤진 goat
-
게으르고멍총하기까지함뇨 인생어뜨캄뇨
-
안뇽하세요 4
아조씨에여 동생이번에 입시해서 논술 도와주다가 오랜만에왔어요
-
약간 뒷북이긴 한데 시험장 풀이 복기해보려고 쓴 해설입니다. 안그래도 투과목 자료...
-
와웅
-
고뱃센츄 3
이뿌던데
-
최근의 생각이다.
-
우웅
-
올해 성불하는 03이든 1년 더하게 된 03이든 모두 행복하자
-
탐구 선택에 따라서 유불리가 너무 심한듯
근황?
걍 행복하게 살고 있어요
학교 옮길생각은 없고
자세하게 말하면 특정가능성 올라가서 여기까지만
닉 먼뜻이에요
위상수학에서 정의되는 개념이에요
컴팩트성(옹골짐)은 한번쯤 들어보셨을 만도 한데, 그거를 확장한 개념이라 보면 되요
어떤 집합 X가 compact한 건 X를 덮는 개집합들의 집합이 항상 유한한 부분집합을 가져서 그 부분집합에 속하는 집합만으로도 X를 덮을 수 있는 거고, paracompact한 건 여기에서 유한한 부분집합 조건을 locally finite refinement로 바꾼 거에요
사실 걍 예전닉 쓰다 특정당할까봐 바꾼...
사실 컴팩트성도 위상수학 절반정도 듣기 전까지는 애초에 정의를 왜 저따구로 했는지 이해 안되는 게 정상이라... ㅋㅋㅋㅋㅋ
소소하게 이루고 싶은 것
현재는 몸무게 앞자리 바꾸기
한 1달정도 더 걸릴듯요
가장 관심있는 분야
화학
물리는 너무 이론적이고, 생물은 너무 현실적이고, 수학은 너무 추상적이라
물리 공부 어떤 방식으로 하셨는지 궁금합니다