함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
3 0
-
이유빈. 1
강기분 왜 안올림? 빨리빨리 좀 부탁
-
1. 동신대학교 한의예과 2. 동신대학교 군사학과 각 학과에 진학하게 될 확률은...
-
서울대 정치외교학부 한자리는 내 것
-
2 0
-
자러간다 4
민나 오야스미
-
1 0
-
2타 3타 4타
-
전 똥테입니다 8
은테한테 속지 마세요
-
나중에 다시 환원할 수 있나요???? ㅎㅎ홯ㅎ하학ㅋㅋㅋㅋㅋ
-
왜 갑자기? 저렇게 되기 시작하지?
-
쎈으로 하고 있는데 집합 명제 쪽 문제 다 풀어야 되나여 아님 개념만 잡고 가면...
-
내 뻘글은 뻘글 중에서도 뻘글 질 개 낮은 뻘글인데 어느새 은테
-
1. 서울대학교 의예과 2. 건국대학교 철학과 각 학교가 걸릴 확률은 50프로 반수...
-
원광메디컬 불인증떴는데 옮은선택한거임? 그래도 의대 가는게 맞는판단아님??
-
암베사 3성 0
-
오늘은 ㄹㅇ 뭐 한게없는디
-
전 은테입니다 16
똥테는 가짜입니다
-
연세대 기균 0
질문 있는데 쪽지 주실 분 있나요
-
n축 특) 알기 전에도 이미 똑같은 걸 쓰고 있었음 3
그래서 미적 합성함수 문제들도 그냥 원래 하던 대로 풀음 ㅋㅋ
-
한 번 더 기기ㅜㅠㅠ
-
미스테리의 친구임 초등학교때 칼부림소동 일으켰어서 왕따..?당한다는데 가끔 말을...
-
1. 연세대 의예과 2. 서울시립대 국사학과 3. 인하대 국어국문학과 4. 마산대...
-
확통 공부하실건가요? 그러고보니까 내신때 안했으면 공부 해야겠네 강사들 ㅈㄴ...
-
만년 완전높2 엿는데 실모연습하니까 깨지더라
-
이떼 엉덩이의 크기는? (단 엉덩이는 자연수이다.)
-
그저 대...
-
장점도 잇고 부작용도 잇는 듯.다만 일반적으로 장점이 훨 큰거 같음.
-
궁금함
-
그걸 대체 왜 올리는 거임? '모두 같이 이득 보는 행복한 세상'이러면서 지들끼리...
-
걍 그렇다고
-
어디가심
-
그냥 갈 거 그랬나ㅠㅠ 일단 너무 끝자락으로 붙어서 면접 봐도 될 확률이 거의...
-
강의들어가니깐 서버 ip주소를 찾을수없다는데
-
자료 올라오는거봐라 ㅉㅉ
-
배달 아조씨가 음식 받았는데 내가 현관 안 열어주면 못 들어오심
-
될거같아서 열신히 운동해야겠다…
-
수리과학부 가면 10
뭘 수리하나요
-
설수의 0
설수의 올해 컷대충어느정돈가요? 짐학사에서 지원안한곳 점공 볼수있나요?...
-
“수시” 17
수학 2컷 걸리고 의대가는 애들 진짜 많네... 이게맞나...
-
자료 안 올리냐? 이기적이네
-
학군지에서 N수 4
생각보다 많지않나요?? 학군지라 학교 50퍼 넘게 재수는 필수고 거의 다 반수는...
-
독서 난이도 대결 17
가능세계 vs 헤겔 오버슈팅 vs 브레턴우즈 우주론 vs 카메라 에이어vs아 비아...
-
N이 한자리면 큰 문제 없음 N이 두자리 넘어가도 괜찮규
-
저는 돈 행복 건강 시간 사랑은 양심적으로 뺄게요
-
쪽지 개수 ㅇㅈ 8
왜클릭
-
누가봐도 이쪽이 형이고 이쪽이 동생아님?
-
3모 90 5모 99 6모 85 7모 99 9모 95 10모 97 수능 98
-
모범생까진 아닌거 같기도 하고,,
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234