수학 채점할 때 현타옴
수1 풀고잇는데 그래프 문제 열심히 풀고 답지 보면
답은 맞는데 답지 풀이가 너무 깔끔하고 쉬워서 현타와요..
고1 내신 때는 그래도 푸는 속도 올려서 풀이 더럽거나 복잡해도 그대로 했었는데 수1, 2랑 미적분은 이대로 하다가는 수능 때 망할 것 같아요..
이런 경우엔 그냥 답지 풀이 계속 베껴서 연습해야 하나요? 아님 고1 때처럼 속도 올려서 커버해야하나요.?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적 28이랑 온도차 ㄹㅇ 뭐임뇨
-
내일 주말도 아닌데 아직도 잠 못 든 기념 질문 받아요 국어나 재수 생활이나 아무거나 필요한거 ㄱㄱ
-
“부엉이 선배님들께서“ 라는 워딩을 실제로 들을 수 있을 줄은 몰랐음 ㅋㅋㅋㅋ...
-
올해부터 단과에서 매주 하위 10%는 방출 룰 도입하자
-
ㅅㅌㅊ는되는건가
-
우리가 있던 그 곳으로
-
인증 못할 외모 0
접니다
-
여주가 다정한 서브남주랑 달달하게 썸 타다가 겉으론 차가운듯하지만 모든게 잘 맞았던...
-
오원장님의 사비로 산 최고급 재질 담요와 사비로 산 부엉이 뱃지와 3
사비로 산 스웩스웩버거를 드시며 사비로 산 인형과
-
화끈하시네
-
서바이벌 누가 만들어? 의대생들. 수능 문제 누가 만들어? 수학과 교수 의떨이네?...
-
확 으흐흐 으흐흐
-
돈은 존나많잖아 ㅅㅂ
-
우리점포 누락시켜주는건 안되겠지?
-
아이유 이쁘다 1
-
잘자요 4
코
-
현타 오네
-
걍 안감?
-
최적 정법 수업 0
책 ㅈㄴ 많던데 개념 교재랑 내 손 노트? 그것만 들고 다녀도 됨?
-
내일당장 나가고싶지않음..진짜 ㅈㄴ한계에몰림
-
님들 4
이거랑 템플런중에 머가더 재밋어요?
-
하이샵은 그렇게 잘 따라하더니 급노잼
-
국회 방청가서 이재명 나경원 정청래 우원식 안철수 싸우는거 직관
-
연예인은 진짜 실물본적 손에꼽는듯 무대인사 이런거빼면
-
근데 학벌을 속이는건 얘기가 다르지
-
수학 문제 3
피보나치 수열 f(n)에 대하여...
-
원래 동네에서 만원주고찍다가 고2때 교복입고 강남가서 5만원주고 찍었었는데 개만족함 교복특정못하겟지
-
2012 대선 때 가족들이랑 콩나물 국밥 먹는데 찰스 옴
-
현우진 유대종 정병훈
-
네이버페이 안쓰면 사형.
-
확통 생각보다 빡세네 23번부터 저렇게 계산시키고
-
느낌이....
-
사이노와 비~~
-
아니 자신의 사상을 위해 서울대 때려치우고 성공회대로 간 사회주의 운동가 정병호...
-
들었던 사람중에서 꼽으려니 이기상말곤 한명도 없네..
-
ㅇㅈ한거 저장하는 거… 다들 봐라고 ㅇㅈ한거겠지만 난 한번도 남의 ㅇㅈ 저장한다거나...
-
거리에선 얼굴 아는 강사 본 적이 한번도 없음
-
쌤들 한번도 못봣지,,,,,,
-
지말로는 중도라하는데 그건 잘 모르겠고 ㅋㅋ
-
배고파 ㅅㅂ 3
왜지
-
강기원 단과 듣는 애인데 부엉이 옆자리 애 자니까 ㅈㄴ 쪼개면서 꼰지르고 오더라 무서웠음
-
간절함
-
일반인들은 이걸 한다고...?
난 답지 진짜 추천 안함... 답지 베끼면서 수학 공부하는 아이들 있던데 그런애들 장기적으론 실력 절대 안 늡니다.. 차라리 오래 걸리더라도 내가 끝까지 붙들고 문제 푸는 아이들이 결국엔 수학 실력 떡상해서 적백 받는거임! 전 후자였슴요
그냥 제 방식대로 쭉 밀고 가는 게 좋겠죠? 겨울방학이니 n제나 실모 계속 돌리면서 여러 유형 겪어봐야겟네요..
푸는 속도 올리는 건 개인에 따라 다르지만 한계가 찾아옴. 이 한계가 100점을 맞기에 충분한 지점이라면 상관없지만, 보통은 그 전에 한계에 부딪히는데 이러면 어차피 풀이를 뜯어고치긴 해야 함
뜯어고치고 싶은데 어떻게 해야할까요? 답지는 항상 제 방식대로 풀고나서 보는데 볼 때마다 너무 차이나서 고칠 방법도 모르겟어요..
최종적인 지향점은 답지와 같은 비효율적인 풀이가 아닌 혼자서 끙끙 앓아가며 터득한 나만의 풀이지만, 아직 이 단계까지 가기에는 너무 멂. 그렇다고 답지에 의존하면 실력 향상에 필요한 경험치를 뺏기는 셈임.
그런 고로 현 시점에서 해볼 법한 노력은 내가 풀었던 문제 중 풀이가 좋지 못하거나, 논리에 비약이 있는 문제를 시간 상관 없이 최대한 간결하고 비약 없이 풀려고 끙끙대보는 거임. 충분히 풀이를 다듬었다면 답지와 비교해서, 답지에 준하는 수준으로 깔끔하다면 일단은 합격. 또 답지의 풀이도 뜯어보면서 어떤 흐름인지 정도는 익혀보셈.
하지만 위에서도 언급했듯, 답지의 풀이는 지향점이 아님. 우리는 더 좋은 성적을 받기 위해 이보다 더 나은 풀이를 고민해야 하지만, 우리에게 주어진 정보만으로는 더 이상 풀이를 다듬기 힘든 순간이 옮. 그때부터 보통 잡기술을 익히기 시작함. 다만 이 잡기술은 적어도 내가 이해할 수 있어야 함. 이게 어떻게 증명되는 건지도 모르고 달달 외워서 쓰다간 조금만 변주를 줘도 활용하지 못하는 경우가 많음.
이렇게 익힌 잡기술, 자명한 사실이나 정리 등을 상기하면서 풀이를 점점 다듬어가는 거임. 이때부터 무한n제의 늪에 본격적으로 빠지기 시작함. 이제부터는 그저 자기 재능이 감당 가능한 선에서 최대한 고능아스러운 풀이를 구사하기 시작하고, 이렇게 익힌 풀이는 무한실모로 계속 실전처럼 연습하고 또 연습하는 거임. 특출난 고능아가 아닌 이상 대체로 이런 과정을 거쳐가면서 수학 높1이 나오는 거
혹시 그 잡기술 알려주는 게 수분감이랑 뉴런인가요..? 내신대비를 위해서 뉴런이랑 수분감 태우는 게 현명한 선택일까요ㅜㅜ
근데 답지 풀이 보면 대부분 비효율적으로 푸는데 그런 답지가 효율적으로 보일 정도의 풀이라니 궁금해지네요
그래프 풀 때 비율 안 챙기고 길이를 보는.? 아직 초반이여서 문제 쉬운데도 이상하게 푸니까 저도 답답햐요