전글 정답
정답: O(존재한다)
임의의 n차방정식에 대해, n차방정식의 근을 x1, x2, ...xn, 최고차항을 a라 하면 판별식은 a^(2n-2) * (x1-x2)^2*(x1-x3)^2*(x1-x4)^2*...(x1-xn)^2*(x2-x3)^2*(x2-x4)^2*...(x2-xn)^2* ...... (xn-1-xn)^2, 즉 겹치지 않는 1에서 n 사이의 자연수 쌍 i, j 각각에 대해 (xi-xj)^2의 값을 모두 곱한 것으로 정의됩니다(사실 아니지만, 일단 동치니까...)
이 식이 글에서 언급된 판별식의 조건을 만족시킴은 쉽게 확인할 수 있고, 아주 열심히 노가다하면 근과 계수의 관계를 통해 오차방정식의 판별식을 손으로 구하고, 계수에 대해 다항식으로 표현됨을 확인할 수 있습니다. 물론 군 이론을 바탕으로 한, n차방정식에 대한 일반적 증명도 존재합니다.
당연하게도 가장 간단한 이차방정식에서 판별식 a^(2*2-2)*(x1-x2)^2 = a^2*(x_1^2 - 2*x_1*x_2 + + x_2^2) = a^2*((x_1+x_2)^2-4x_1*x_2) = a^2((-b/a)^2-4*c/a)=b^2-4ac입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서강 대 성균 3
둘 다 사과계열이면 어디로 감?? 진지하게 둘 중에 골라야됨.. 어디가 더...
-
인생업적 4
-
사탐 추천 좀 10
사문 끼고 하나 고민중이에여 정법 사문 했었는데 6 9 만점이다가 수능 날 정법한테...
-
와 과외 드디어 잡힘 11
성적 올려줄게~~
-
뭐가 더 어려움뇨
-
드디어 뒤지네 젠슨 황 ㅅㅅㅅㅅㅅㅅㅅㅅㅅ 한달동안 30배 올랐고 거품 오지게ㅔ...
-
1년을 그렇게 열심히해도 국수 55가뜨네
-
밍구리 언니야 ㅜㅜㅜ
-
뭔가 정적으로 웃김
-
보통 어떻게들 하시나요
-
확대수술하면 4
길이는 못늘리나요? 오로지 두께인가요?
-
시끌시끌하다가 역사속으로 사라지는 기분이네
-
내가 어쩌다 이렇게 됐지?
-
국어고자라 국어 비중 가장 높여서 하려고 합니다 스카이가 너무 가고싶어서...
-
중대 vs 외대 10
중대 사과계랑 외대 경영 차이 많이 나나요…? 과 보면 경영 가고싶은데 입결차이가...
-
기억력 안좋아서 모르겠노
-
인하대 작년에 새터 3월에 했다는데 진짜인가요?
-
‘휫자점’이라고 댓글 달았는데 요즘은 버거로 메타가 바뀐 것 같더라고요 뭐가 됐든 ’줘‘
-
SNSㅇㅈ 5
Wow
-
임정환T limit->현돌 기시감 기시감이 정확히 뭐하는 책인가요?? 독학서인지...
이정도돼야 의대가는구나
아니 판별식은 왜 존재함..
근데 5차방정식 판별식 이런건 의미가 뭐죠 이차방정식같은건 직관적으로 느낌이 오는데
전글에 대충 써있는데, 허근이 2개, 6개, 10개...면 음수고, 0개, 4개, 8개... 면 양수에요
식을 뜯어보면, 그럴 수밖에 없게 구성되어 있어요