정말 멋잇는 문제 4
평면 위에 2n개의 점이 있는데, 어느 세 점도 한 직선 위에 있지는 않다. 이 점들 중 n개에는 빨강칠을, 나머지 n개에는 파랑칠을 했다. 그럼 빨강점 하나와 파랑점 하나를 잇는 n개의 선분을 그리는데, 선분끼리 서로 가로지르지 않도록 (교점이 없도록) 그리는 방법이 항상 있을까?
당연히 증명이 주인 문제임미다ㅏ.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1.고집 쎈 여자 2.술 좋아하는 여자 어디가 더 비호감 많나요?
-
10명 뽑는데 40명정도 지원했음 점공을 20명밖에 안했는데 이거 어케보심 극안정은...
-
쌍지 25교재 0
작년거랑 바뀐 내용 알 수 있나요?
-
그래도 글은 하나 써야할것 같다는 생각이 들어서 씁니다. 일정 일시는 제가 정리를...
-
굳이 풀어야하나
-
국정원장
-
고양감 4
야옹~
-
NYA ONG
-
32프로 할인하길래 벤틀리 충동구매로 뽑았다 사실 모형이다 사실 모형조차 살 돈이 없다
-
프사 1
추천좀 좀 바꾸게
-
인강 풀커리 타려는데, 추가적으로 풀어야 할 문제집 있을까요? 2
국어: 강민철 독서 + 강민철 문학 + 전형태 언매 수학(미적분): 현우진 영어:...
-
잘자용 3
오야스미
-
다들 어떠셨나요?
-
하루종일 안 들어오니까 많이 줄었어요 그렇가고 어디 놀러간것도 아님 집에만 있었음....
-
후배랑 친해지고 싶어..
-
저한테 차단당하신분중에 해보실분?
-
차의과 약대 1
95.8이면 붙나요? 점공 상황 좀 알려주실분
-
님들 내가 1
다른사람들은 아무렇지 않아하는데 나만 지랄하고 그런 느낌있음?
-
1. 6년제인 점 + 가서 4년 더 해야되는 점 감안해도 가는 게 낫나요? 2....
-
뭐먹
-
밥을 먹어볼가 2
바이바
-
채플 사참 다 합쳐서 19.5가 말이 되나 최소한 24까진 보장해달라고 하필 숫자도...
-
밥먹고 와서 헹굼 한 번 더 하고 널어도 되겠지?
-
"공통점이다" 라는 공통점을 찾을수도 있음. 이말은 곧 다른 공통점을 찾는것임...
-
울지마바보야 7
넌정말괜찮아
-
ㅋㅋ vs 작년 문과입시
-
반수할거면 10
지금부터 공부하는게 낫나 근데 안하는게 더 불안함 쫌쫌따리 해야겟슴
-
복전한다해도 0
1학년부터 복전할 전공수업을 듣진않죠?
-
엄마 근데 나 미필삼수야... 졸업하면 28이라고ㅠ
-
본인 이상형 11
외모 상관 없음 착하고 감사할 줄 아는 사람 본인만의 색채가 있는 사람 똑똑하진...
-
타점 ㅍㅌㅊ? 1
오늘 쳤는데
-
안 고픔 신기해요
-
그리고 5일 연속 9시임 ㅁㅌㅊ?? 103과 104에서만 사는 삶
-
친구도 여자도 큰 야망에 가려서 저물어... (노엘 - 서울 허성현 파트)
-
다들 그렇자나
-
작년동안 본 사람 < 최근 일주일간 본 사람 인듯 진짜로
-
여캐일러모음 3
-
내일은노래방을가고말겟어
-
ㅈㄱㄴ
-
요즘에 사람들 씨잼 잘 안듣나? 레어사니까 궁금해졌는데 앨범도 안내고 뭐 안한다고 모르나...?
-
그지가되. 1
ㅇㅇ
-
쫄려서 오천원만 했는데 ㅍㅌㅊ?
-
큐브 ㅁㅌㅊ 1
하루에 2시간씩 투자하고 어제오늘 합쳐서 7건 완료
-
왜인지는비밀임
-
뭐노?
-
놀라운 사실. 5
살면서 우르프를 재밌게 해본적이 없음.
-
시발점 풀고 있는데 예제는 그렇다치고 스텝1부터 시부랄 개념 적용이 안돼서 1~2개...
-
요시요시 나데나데
으으악!
너무어려운것입니다
먼가 그림문제같으면서도 그림으로생각하면안될거같애
증명을 못하겠다 으어
으악
어느 세 점도 한 직선 위에 존재하지 않기 때문에, 두 점을 이은 직선으로 나눈 두 영역중 한 곳에는 빨간점, 파란 점이 하나씩 남도록 직선을 그을 수 있다. 두 점을 잇는다. 지금까지 사용된 네 점을 배제하고 반복한다.
세 점이 한 직선 위에 존재하지 않으니까 두 영역의 점 개수가 같게 하는 직선을 항상 그을 수 있는 것 같은데....아닌가 으악
선분 개수가 n개가 안 되는거 같아요
설명을잘못하는듯...
너무 졸려서 ㅈㅈ,,
자면서 생각해보죠
n=1일때, 성립한다.
한 점씩 더해질 때에 기존의 점들과 교차가 발생하지 않으면 그대로 오케이, 교차가발생하면 새로 찍은파란점에서부터 교차가 먼저 발생하는 선분의 빨간점에 잇고, 남은 파란점은 그 다음 교차하는 빨간점에 잇고 하는 식으로 반복하면 교차가 존재하지 않는 새로운 배치가 발생한다.
수학적 귀납법..?
오, 되는거 같은데요
생각 좀 해봣는데ㅜ이거 안 되지 않나요. 새로운 배치를 만들 때 또 다른 교차가 생길 수도 잇는거 같은데