생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어우 허리가 넘 아픔 응원 체험 했더니ㅋㅋ
-
아빠가 힘들게 번돈으로 난 재수나 하고 있네...
-
이제 내일이면 0
합격 발표 나오는 주간이 되는군요 길고 긴 시간이었다…
-
다른 상황도 만들어볼게요
-
본인의 4수 생활 + 펑펑 놀던 중고등학교 시절 + 앞으로의 대학생활 이것들을...
-
5억? 10억?
-
왜세시? 1
왜세시이십분???
-
자퇴 안 했으면 여기 가야 햇슴
-
다른 책 병행없이 수학만 하루에 6시간내외로 할때 월~토 한다고할때 다 푸는데...
-
동국대라해서 캠퍼스어디냐 물어보니 서울캠.. 이라길래 호텔경영이라함 검색해보니...
-
플렉스 1
-
Flex ㅇㅈ 3
멜 샀음 ㅈ사기 오피챔 캬
-
응..
-
왜 난 계속 그대로지 나만 이럼?
-
그냥... 평범하게 결혼해서 평범하게 애키우고 살고싶음 근데 그게 아예 안되니까...
-
제발 붙어라
-
다들 이거 보셈 4
보고 야식먹고 살찌셈 ㅋ.ㅋ
-
ㄹㅇ
-
올해 언미물지 99 92 2 88 80 이었는데 한양대 달아놓고 서연고 상경 목표로...
-
자자 0
ㅃㅇ
-
왜냐면 투자할만한 가치가잇는 집도업ㅎ고 지방에서 잘산다 소리들을정도면 굳이 돈에...
-
생각보다 가격이 많이 나가진 않아서 놀람 주상복합이라그런가 뭐 그냥 살기 좋으면...
-
소화가 안돼
-
할아버지 사업 했다가 망하셔서 아빠는 가난하게 컸는데 대기업 들어가셨어 지금은...
-
저는 절대로 서울 강남 대치동에 거주하는 부자집 아들이 아니라 대전 중구 언저리에...
-
슈냥님.. 0
….
-
다들 3
너무 싫어하는 쟨 인성 안좋아서 망하겠지 하던 애가 명문대 가거나 잘 된거 어케...
-
예? 3
예.
-
응 우리집 아니야 응 우리집 아니야 응 우리2ㅣ1 아닞8 으우두일1ㅣ 탐짇ㅇ 응...
-
진짜 내조 잘할 자신있는데... 메디컬 다니는 멋진 남자만나서 결혼하고 싶음
-
평반고임? 2
진한ㄱ률 개높내
-
ㅏ 미적 해야하는데 11
수악 유기중
-
ㅂㅇ용 5
ㅂㅂ
-
뉴분감 병행 관련 질문 10
수분감 스0 > 뉴런 > 1 > 2 vs 수분감 스0 > 1 > 뉴런 > 2 머가정밴가요.
-
오르비언들 개많을듯
-
정보) 현재 난리 난 네이버페이 대란 요약 .jpg 0
https://sbz.kr/zdk1D
-
뭐가 문과지?
-
집값은 모르겠고 3
마음이 가난하지 않은 사람이 되었으면 좋겠는데 너무 어렵네요
-
여대/공학 1
다른조건 안따지고 기준을 학교생활로만 본다면 공학이 어느정도 큰 메리트가...
-
수학 4
A형시험 B형시험 차이좀
-
이거뭐임? 3
그럼 무제한이란게 왜잇어 시발아
-
걍 포기하긴 했음
-
얼버디 8
ㅎㅇ
-
빠른년생 시바루ㅜㅜ
-
다행히 어케든 자는데 성공해서 지금까지 잣음
-
수특사야즤
-
오 지금이 최고가네 14
내 집이라곤 안했다
-
가릴 처지가 못 돼서 그렇지..
-
방마다 에어컨있고 복층이더라 이게ㄹㅇ부러웠음
투과목 칼럼은 개추