[자작문제 해설] 수1 삼각함수 문항
아까 올린 이 문제에 대한 해설입니다.
1번 풀이는 조금 많이 발상적인 면이 강하고, 2번 풀이가 약간 정석적인 루트라고 볼 수 있을 것 같습니다.
관건은 sin값이 같다는 조건을 어떻게 해석하느냐 였는데, 아마 해당 조건의 해석 방향이 수1보단 중등 기하적인 성격이 강해 낯설어하셨던 것 같습니다.
다음에도 재미난 문제로 찾아뵙겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
완전 새벽에 어울리는 분위기여서 좋네….
-
섹시 3
ㅋㅋ
-
우울글 말고 우웅글 써야지 우웅 나 내가 생각해도 좀 커여운듯 ㅇ.
-
안자는사람 있냐 1
ㅇㅇ?
-
가끔노는것도참재밌는거같아요
-
크아악 2
ㅋㅋ
-
행복은 어딜가도 보이는데, 나에게만 닫혀 있어서 어찌할 도리가 없소. 나는 다정하고...
-
슬슬 자야지 0
다들 굿밤~
-
레전드피곤하네 2
어쩌다 5시가
-
사회나가서 고등학교 자랑하기 무슨 심리로 하는건지 이해가 안됨
-
아 머리아퍼 2
왜 아픈가 했더니 잠을 안자서 그렇구나 잠은 안오고 뭘 해야하는거지…
-
등록금개비싸네 1
여행경비짜면서 갑자기생각남
-
고등학교 ㅇㅈ 7
진짜 좆반고네 …
-
학벌은 마치 6
.
-
잘쓰면 캐리하지만 잘못쓰면 좆되는거지 ㅇㅇ
-
팔로워삭제라고하나 아니면 차단인가?
-
세지 씹노베 이제 시작하려는 반수생인데 핵심기출 교재 보니깐 짧은 시간에 끝낼 수...
-
달은 파랗다 4
블루문
-
몇도짜리를 먹어도 알코올이 들어가면 무조건 3-4시간만에 일어남 몇시가됐던간에.....
-
고등학교 ㅇㅈ 6
나름 순위 높네
-
ㅋㅋㅋㅋㅋㅋ 3
전적대가 어딨는 대학인지 검색해봤는데 아ㅋㅋㅋ 걍 내가 바보였던걸로~
-
부산 여행 0
실시간 새벽 바다
-
학벌이라는 틀이 0
사회가 교육이라는 자원을 투자할놈과 투자하지않을놈을 가려내는 가지치기라는 생각이...
-
화2 기체 2
화1 잘 되잇으면 좀 편하긴 할 듯.근데 안해도 상관없는 듯함
-
거지키우기 9
무한의 성장판 표창키우기 이런게임은 진짜 특이점 한번 찍으면 걍 게임 켜두기만 하고...
-
탱커, 브루져만 안하면 될 듯.탱커로 시작하면 맞는게 익숙해져서, 무빙이 구려짐
-
ㅇㅇ
-
여기 수험생들 중에 저같은 미자가 얼마나 많은데 ...
-
수학 검토 연습 안한거
-
열등감은 남을것같음 걍 남의말에 너무 자격지심을 잘 느낌 지기싫어하는 성격과...
-
고2 마더텅 한번 풀어보는거 괜찮나요? 비문학 공부는 따로 해본 적 없습니다..!
-
25수능 지1지2 응시자였습니다만 올해 지1은 가져가고 지2는 가차없이 버렸습니다...
-
대표적으로 보면 삼차함수기준 ax^3+bx^2+cx+d 또는...
-
어른들은 학벌이 전부가 아니라고 말씀하시지만 그래 전부가 아니지, 하고 입시판을...
-
국어 공부하는데 빨더텅처럼 모고형식인게 좋을까요 검더텅처럼 유형?별로 나뉜게 좋을까요
-
아 배고프다 0
벌써 2시간째 공복이야 ㅠㅠ
-
제곧내
-
와 이게 되네 7
거의 망하려던 참이였는데 결국
-
아 감긴가 8
마른기침 준내하는중
-
라이브인데 미루다가 3,4주차 추가영상을 못 봤는데 혹시 따로 구매할 수 있는 방법이 없을까요ㅠㅠ?
-
커버는 무시하세요
-
난이도 꽤 잇는 문제 대가리박기 하는건 진짜 개꿀잼이다 ㅋㅋ
-
...
-
안녕히주무세요 1
요즘잘자쿨냥이모드취침
-
ㄱㄴㄷ로 내면 될걸 매번 채점으로 내는지 모르겠는 유형 1 글이 없어도 전혀 상관이...
-
현실안주vs그래도한번더해보자 사실 안주도 아니야 그냥 합리화지 결국 서울대에 못간...
-
학교 다니면서 반수할 수 있을까 동기들한테 들키기 싫은데
-
난 솔직히 기만글은 별 거 없는 사람이 약간 눈살 찌푸려질정도로? 온몸비틀면서 기만...
-
1. 독재- 잇올, 이투스247 이번 수능 국어백분위99로 ㅈㄴ잘나왔는데 현역 때...
와 딱봐도 어려워서 버렸는데
버리길잘했네
ㅠㅠㅠㅠㅠ 당신만을 기다렸는데 ㅠㅠㅠㅠㅠㅠ
"문제가 평가원스럽지 않았다"라고 생각합니다
1번처럼 끼워 맞추려다 말았는데 맞는 풀이였네요 ㄷㄷ
공부 그거 얼마나 쉬었다고 벌써 원을 다 까먹었는지..
1번 루트로 가실 생각을 하셨다니... 대단하십니다 ㅎㅎ 사실 1번 상황을 보고 거기에 맞춰 문제를 제작하였습니다
제가 도형에 약해서 일부러 보조선의 모든 경우를 다 생각해 보고 들어가기 때문에 그랬던 것 같네요
이게 진짜 좋은, 중요한 자세인 것 같습니다
물론 틀려 가면서 데이터베이스에 누적되는 거라 ㅋㅋㅋ 올수 14번도 설맞이에서 당해 본 발상이 아니었더라면 높이를 구할 수 없지 않았을까 싶긴 합니다
한 번 당한 문제를 다음엔 안 당하는게 공부의 핵심이라고 생각해요
친구한테도 이 문제 줫는데 풀때까지 안 잔다는데 괜찮겟죠?
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 풀어내실겁니다 아마...!
왼쪽 삼각형 볼 생각은 하지도 못했네요.. 덕코 감사합니다 ?
ㅎㅎ :)
EP길이랑 각 DEP가 45도임을 바로 구하는 방법도 있네요..!
Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•이라 할 수 있고, 원주각의 성질로 각 DAP=DEP, 각의 이등분선이니 각 DAP=PAE=•, 이때 각 A가 직각이니 2•=90° <=> 각 DEP=45°, 삼각형DEP는 직각이등변 삼각형이 되네요!
맞습니다! 해당 방법으로 해설에서 EP의 길이를 구한 것이나, 과정이 자명하여 굳이 따로 서술하진 않았습니다 ㅎㅎ.(페르마 아님) 결국 외접원의 반지름을 구하기 위해선, EP의 길이와 각ECP의 sin값을 알아야 sin 법칙을 사용할 수 있고, 문제에서 주어진 sin 값이 같다는 조건은 각ECP의 sin값을 알아내기 위해 사용되었습니다.
"Sin값 같다는 조건에서 매개하는 각 이미지로 각 DEA=PEF=x, DEP=•"
이 부분에 관하여 약간 첨언하자면,
ㅋㅋㅋㅋㅋ 저 부분을 고민을 했었던 것도 사실입니다....
다만 해설을 저렇게 작성하지 않은 이유가.. sin값이 같다고 했을 때 저 두 각이 a와 ㅠ-a 관계인지 같은 각인지 명확하게 보일 수 없어서 였습니다.
조건을 cos값으로 줬다면 논리적 비약 없이 해당 결론이 바로 나올 수 있지만... 그러지 말라는 문제의 의도 정도로 봐주시면 감사하겠습니다!
좋은 문제 공유해주셔서 감사합니다 :)