미적분1 자작문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
예전에 현돌 기시감 하다가 ㅅㅂ 이걸 다 해야 한다고? 하고 손절쳤는데 1컷이...
-
기차지나간당 9
부지런행
-
삼수해서 3따리면 전문직 시험은 처다도 안봐야겠죠? 1
열심히 했는대 수능은 유독 점수가 안나오더군요…
-
어차피 평생 쓸데도 없는거
-
편의점 대부분 거리가 멀거나 야간만 뽑음 지방이라 높은 확률로 최저안줌 단기로...
-
기차 지나간당 2
부지런행
-
진짜 잠 3
ㅂㅂ
-
날 붙여다오..
-
내년 목표 4
1. 재수 성공 2. 개명 성공 3. 캐논락 완주 성공 4. 오르비 끊기
-
근데 아싸랑 아싸는 서로 집밖으로 안나가서 만날일이 없다는거임
-
ㄹㅇ 잘 시기를 놓쳐서 지금 머리 겁나 아픔 ㅇㅇㅇㅇㅇㅇ
-
무물받음뇨 2
잠이 안옴뇨
-
체감이 안되네 내가 남들 글을 신경 안써서 그런건가
-
이게 여시회원 80만명의 힘인가 난 지금까지 여초화력을 이기는걸 거의 본적이 없음
-
가/나, A/B 중복은 풀면서 가, B 기준으로 나, A에서 중복된 거 지우지 뭐 빠진 거 없죠??
-
34444 언미생지 생명은 높4뜰것같아요ㅜ 문이과 상관없이 인천경기권에서라도 불가능할까요?ㅠㅠ
-
3시간동안유튜브만봣네
-
머리 멀루하지 1
수능 끝난지가 언젠데 아직도 고민중 머리 어지간히 길어서 웬만한건 다될듯여 추전좀 부탁드려요
-
주말엔 한국어가 잘 안들림
-
유루캠좋다 4
잔잔한게 또 느낌이있거든요
-
대형특수 50점 출결 7점 가산점 13점 전공학과 20점인데 계산상 90점 나오는데...
-
가 세상이 아침부터 움직이니까 그런거임?
-
현재 돌아갈 전적대 있는 상황 + 올해 수능으로 적어도 옆구르기 가능일 듯 한데...
-
정해진 시간 되면 핸드폰 못 키게 만드는 뭐 그런 거 없나요 4
1시 전에 자려했는데 말도 안 됨...
-
이거 다 외우면 1등급 나오겠지
-
성적표뜨고 좀 나중에 받나요 접수직전에
-
진짜 건실하게 산다
-
자러가야겠다 3
힘들어요...
-
가채점을 안해서 먼가 끼기가 불편함
-
진짜 잠 6
보이면 차단 박아주셈
-
딱빰 마렵네
-
세지 vs 한지 1
뭐가 더 나을까요 사문이랑 같이 할거임
-
하도 쳐맞다보니까 수능장 문제 볼때 마음이 편했음
-
서버 점검하네ㅋㅋ
-
심심해서 유튭 인스타 보다 질리니까 오르비 보는데 글리젠이 없네.... 다들 수능...
-
ㅇㅈ 1
오늘만 몇번째냐
-
펑임뇨
-
난 수능 끝난 n수생이 아니라 대학생이었음
-
22 예과1학년이니까 22,23 놀고 24본1 빡세게 공부하고 좀 감 잡을꺼아님...
-
빈집털이 하셈 난 안 할 거임
-
오르비에 처음 글 써봅니다 먼저 저는 일단 수시 거의 붙은 것 같아서 반수 준비중인...
-
스펙 평가좀 12
어떰뇨
-
ㅅㅂ질렀다 8
Team기하& Team07 ㄹㅊㄱ~!
-
국어 화작 2(낮) 수학 미적 88 -1 영어 2 생1 50 -1 지1 45 - 1...
-
일반물리학 질문 1
만약 초기 높이와 최종높이가 같은 지표면에서 연직 위로 포물선 운동을 한다고 하면...
-
안아주세요 12
안아주떼욤
-
약값만 46억원…희소병 딸 살리러 국토대장정 나선 목사 아빠 4
[뉴스리뷰] [앵커] 근육이 점점 약해지는 희소병에 걸린 딸아이를 위해 국토대장정에...
-
화1은 인정하거든요 저희 학교 화학쌤도 1은 하지 말라하시고물1은 왜 그런걸까요...
-
노래까지 개잘하네 ㅋㅋㅋㅋ 박효신 해줄 수 없는 일 부르는데 웬만한 가수급임 이렇게...
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..