순열과조합 확통 공부방향
12를진동하는 3월2 4월1 6월2 7월1 고3현역입니다
순열과조합 확통 공부법에 대해 질문드립니다
기출은 자이 한 5번은 본거같은데.. 왜 이렇게 확통을 못할까요 ㅜㅜ
인강을들을까요? 답을주세요..ㅠㅠ
신승범 확통이 좋다는데 ..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옛날엔 현실의 예쁜 사람 보면 기분 좋아지고 그랬는데 이제는 그냥 아무런 감정이...
-
ㅇㅈ 4
못 생김 주의) 펑
-
ㅠㅠ
-
여잔데 친구없을까봐 ㅇㅇ
-
본거또보고 16
다음에혼자인생네컷이라도찍으러갈께요
-
ㅇㅈ 3
펑
-
미쿠짤 1
영역전개 “미쿠만발”
-
ㅇㅈ 6
9라임
-
ㅈㄱㄴ
-
걍 여행추억용으로 ㅇㅈ 10
A급이라 2분만 간다..
-
아무도 안 보겠지???
-
이 글을 보는 너 인증해라.
-
그림체.
-
재탕올리면 본거또보고 라고댓달릴 확률99%라 못하겠어요
-
원래 멀티를 개잘햇거든요? 근데 요즘은 하나에 꽂히면 그냥 그것밖에 못해요 예를들어...
-
"도미노 현상" 공장 줄줄이 폐쇄…'K-철강' 쇠퇴의 그늘 0
산업의 쌀이라 불리는 한국의 철강 업체들이 줄줄이 공장 문을 닫고 있습니다. 중국의...
-
요즘 헬스하는데 0
진짜 근육통이 너무심함 미치겠따
-
일주일에 150분 이상 운동했더니 나타난 효과... 평균 사망 위험 22% ‘뚝’ 0
빠르게 걷기, 자전거 타기 등 중강도 신체활동(PA)을 일주일에 150분 이상 하면...
-
ㅇㅈ 5
오랜만입니다그런대이제인증을곁들인
-
ㅇㅈ 2
사실 그런 건 없고 제가 좋아하는 민지 짤 보고 가세요
-
거기 지나가는 당신! 31
여캐일러 하나 주고 가요
-
그것은 바로 주식 안 하기! 주식 하는 사람들이 돈을 잃기에 나는 가만히 있으면...
-
알게모르게 고충이 있음 거기에 egg까지 크면..ㅅㅂ
-
미~적백미적백
-
쪼끄매서 귀여움
-
ㅇㅈ 15
숏충이의말로ㅇㅈ
-
물2 어카디 1
현역이고 물1베이스 나름 있는데 1) 물2 과외받으면서 전적 의존(나름 고수에...
-
욕하고는싶었는데 대댓달려서 박제당할용기는없는거임?
-
아니나성희롱당한것같음 11
여행중길거리를지나가다가가게아저씨가컴인싸이드라고했는데 이거이상한뜻맞죠어떻게이런말을할수가있죠?????
-
중앙대논술 1
중앙대 논술 기하 확통 비중 큰가요? 논술 준비 하나도안돼있고 최저만 맞췄고...
-
궁금
-
ㅈㄱㄴ
-
표본 들어오기 전보다 칸수 올랐나요
-
아이고야.. 0
내일 학원이 있었구나.. 일찍 일어나야 하는데 음 내일의 내가 해결해 줄 거야
-
쳐띄우는 거임 진짜 꼴도 보기 싫은데 경기 할 때마다 봐 진짜
-
ㅇㅈ 6
부끄럽네
-
자야지 자아지 자지 ㅗㅜㅑ
-
“이건 소름이 돋는다” 섬뜩한 여성 정체…알고보니 ‘아연실색’ 1
영상 생성 AI로 만든 영상 [출처 오픈AI] [헤럴드경제= 박영훈 기자] “소름이...
-
자야지 3
-
질문받겠습니다 25
안녕하세요
-
ㅇㅈ 6
수능보는주말에 핸드폰26시간함
-
그건 바로 흑인 프사의 "오.쓰.오.억"
-
수고했어 오늘도 6
-
육군 기행병 9
어떤가요?
-
공통수학인강이슬슬나오는걸보면기분이이상하다
-
스스로 총 쏴 얼굴 잃었던 美남성, 안면이식술로 새삶 2
미국에서 총으로 극단 선택을 시도해 얼굴이 손상됐던 남성이 안면 이식 수술을 받고...
-
ㅇㅈ 1
저랑 닮았네요..
-
ㅇㅈ 16
saint님.. 종목추천좀..
-
ㅇㅈ 0
진짜 너무 못생김.
여러 선생님 들어본 경험으로는 신승범 확통은 호불호가 극명하게 갈림
아..진ㅉ요?? 불호들은 왜 싫대요..?ㅠㅠ
맛보기를 들어보세요~ 전 몇년 전에 들은거긴 한데 경우의 수를 구하는데 생각의 방향?이 좀 다른 선생님들과 달라서 저는 안들었었어요
저는 확통같은경우 전혀 접근하지 못하는 문제는 없다고봐요
주로 조건을 놓치거나 실수를 해서 틀리는데 그렇기 때문에 확통을 잘하는 방법은 그냥 많이 풀어보고 많이틀려보는 수밖에 없다고 생각해요
어떻게보면 투자대비 효율이 낮다고 할까요
순열과 조합이 어렵게 느껴지는 대부분의 경우는 합의 법칙과 곱의 법칙에 대한 이해 다시말해 경우의수 구하는 과정에서 언제 더할지 언제 곱할지에 대한 명확한 구분이 되지 않기 때문이라고 볼 수 있어요. 사실 현역시절 가장 힘들었던 부분이기도 하구요. 이에 대해 간단히 설명하면 합의 법칙의 경우일반적으로 우리가 수능에서 접하는 문제들은 더하는 것 끼리 '배타성'을 가져야한다는 원칙과 (2의배수 3의배수 문제같은 경우 논외) 곱의 법칙의 경우 문제에서 요구하는 하나의 사건이 만들어지지 않은 경우에는 서로 곱한다는 원칙을 잊지 마셨으면 해요. 다만 곱의 법칙 같은 경우에는 (특히 순열논리) 앞서 고려했던 부분에 대해서는 다음번에 고려해선 안된다는 점에 유의하시면 좋을듯해요. 혹시 이해가 안가시거나 궁금한점 있으시면 쪽지 보내주세요
김성은확통 갑