정규분포의 표준화는 왜하는걸까? & 변곡점은 어떤 점일까?
저는 수학자가 아닌 그저 동네 수학 과외선생일 뿐입니다.
또한, 어쩌면 세상을 바꾸고 싶어하는 그냥 20대 청년일 수 있습니다.
어찌되었건, 저는 항상 노력합니다. 이 무언가가 누군가에게 힘이될 수 있기를..
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
- 공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요http://orbi.kr/00011893846/
저번 칼럼은 이거였습니다!
이 점은 변곡점인가요? & 정규분포의 표준화는 왜하는걸까? https://orbi.kr/00012108382
정답갑니다.
이제, 우리는 P(0
평균에서 표준편차만큼 두칸 떨어진 곳과 평균 사이의 넓이!
그렇게 생각하는데에 가장 좋은 정규분포는 평균이 0, 표준편차가 1일때라구요.
이렇게 이해해주시고 풀어주시면 나중에 표준화를 헷갈릴 이유가 없습니다!
그렇다면 다음칼럼 가겠습니다.
이계도함수의 정의부터 살펴봅시다!
추가적으로 이 문제를 한번 더 생각해봅시다!
도함수의 도함수를 생각해보세요! 도함수는 무엇이었나요? x에 따라서 원함수 f(x)의 미분계수를 함숫값으로 대응한 함수였습니다.
도함수의 도함수도 x를 대입했을 때 f'(x)의 미분계수를 함숫값으로 대응한 함수겠지요.
미분계수는 무엇이었나요? 접선의 기울기였습니다!!
이쯤되면 명백하게 생각할 수 있겠죠!
정답은 다음 칼럼에 갖고오도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼마나 영향받음? 정시에서 내가 받은건 아님
-
쉬운직업? 거지 백수아니면 없다 모든 직업은 자기나름의 고충이 있다 정치인만해도...
-
그냥 날먹하고싶다
-
님들 그거 앎? 0
롯데리아 지파이 하바네로 재출시함
-
사정이 어려운 것 같아서 한두 번 늦게받았더니 과외비 76만원 들고...
-
경희대크라운관에서ㅎㅎ 음악은너무좋아요
-
우린 떨어질 것을 알면서도 더 높은 곳으로만 날았지<-이거 너무 좋아보이지 않나요?
-
올해 1학기때 저렇게하면서 힐링시간 개념으로 국어 공부했는데, 애초에 저건 공부도...
-
아도 내한 기념 3
노래듣기
-
히히
-
단순히 분탕치는 게 아니라 저게 현실인데? 나 사람 살리는 의사 되겠다, 나 소아과...
-
내가 공대나 대학원생까지 끌어들여서 “의대생만 불행해 빼액” 한 적은 없는데,...
-
가능성은 작다지만
-
그냥 끝까지 다 볼껄... 줸장
-
자취하기가 진짜 ㅈ같은 저주받은 위치임ㅋㅋㅋㅋㅋ 옆동네 아주대는 광교에 있어서 좀...
-
입시판을 뜨라는 계시
-
92 92 1 96 99 이렇게 나오면 어디즈음 간다고 보시나요
-
유대종 쌤 숏츠 다 봤는데 재밌어보였음.
-
이제 올해 1/10 남았어요. 36일 2시간 뒤에 새해...
-
고정외를 내놓아라 추추추추추합이라도...
-
옵치할래 5
?
-
무한 엔수 박으시나요?
-
늦게 개강하시네ㅠ
-
6월 영어 원점수 85 9월 영어 원점수 85 수능 영어 원점수 85(듣기 -3)...
-
2026수능을 대비하며 한완수를 하려고 마음먹었습니다 수1 수2 파트 1 2를 꼭...
-
본능적으로 강자에게 복종하는거지 드루이드전형으로 건수의 보내줘
-
뱃지 얻는법 좀 0
대학 빼고 다른 뱃지는 어케 얻음?
-
엘리베이터 타다가 틈에 빠질뻔;
-
맞팔하실분 3
아님 이미 팔로우중인데 내가 팔로우를 안했다 하는 분들도 ㄱㄱ
-
이렇게 다녀올까 8
-
들을려고 하는데 어렵나요?
-
ㄹㅇ 제가 그랬거든요 수능 날 이렇게 뒤통수를 쳐맞을 줄은... 단어 좀 꾸준히 외울 걸
-
귀엽네 ㅋㅋ 14
확 그냥 마 잡아무뿔라 마!
-
공감도 지능이다 2
이 말이 요즘 많이 와닿는다
-
국어만 고정 1이어도 삼수까지는 머리 박아도 된다고 생각함 그만큼 다른 과목에 비해...
-
옆사람도 계속 손 부채질하고 옷 잡고 펄럭거리고 있음
-
혹시 모르니까 원광대랑 전북대는 다시 팔 걸어놓음 내일 면접이네 하
-
면접 전날에 서울 올라가서 면접학원 들르려고요
-
이제 슬슬 할 때가 되었죠 잡담 태그 잘 다는 착한 오르비언이 좋습니다 저도 잡담...
-
썸네일 도긩쌤 뒤에 불꽃 있으면 그 편은 꿀잼 예약임
-
제가 다른 과목은 인강을 들었어도 수학은 딱히 인강을 들어본 적이 없고 동네...
-
ㄱㄱ
-
나이도 먹었는데 우와 대단하네요 이익을 위해서라면 뭐라도 해보겠다는 건가.. 근데...
-
좋아하지 않는데 사귀면 11
그 사람에게 미안하지않남........ 어차피 결혼은 아니니 알빠노 마인드임?
-
편입 티오 늘었다고 편입판 작년부터 수험생 대거 유입됐는데 저거 어케 뚫음..?...
-
《사랑과 거짓말》 국가에서 만 16세가되는날 결혼상대를 정해줌
-
예과생 + 거의 매일 시간 꽉채워서 과외 + 매우 높은 수능 성적 아니면 생활비 다...
-
추천 좀요
-
텔그나 진학사에 설대식 변환점수 내신반영된거?? 텔그는 된거같던데
음냐 19번 답이 4번이었던것 같은 기억이...칼럼 잘봤어용 ㅎ 교과서는 미근ㅏㅣ엔인가보네요!!
네 맞습니다! 교과서는 M 수학교과서 확률과 통계, 미적분2를 캡쳐했습니다.
이 내용은 비영리적 목적으로 쓰여졌습니다.
두유 두유!
두유그만해
아 맞다 또한, 정규분포 곡선을 좀더 설명하자면
그 밑넓이가 1이고, 좌우 대칭인 종모양의 곡선을 정규분포라 합니다.
가우스 적분에 의해 넓이가 1임을 밝힐 수 있다고 합니다.
응아
설마 그 책내용일...
약간?
0ㅇ0 확통 식이 상당히 복잡해보이네여.. 이번 칼럼도 잘 읽었어요 감사합니다!
과연 읽었는가..
읽었어요 ㅠㅅㅠ 근데 19번은 잘 모르겠다는게 함정!
일단 변곡접선 얘기를 좀 하고싶었어요.
그리고 확통식이 너무 어려우면 제껴도됨
중요한건 확통식이아니고 결론이져
직접 만든? 저 이거 무료배포 의향있으신가요 보고싶어요
확통부분은 책으로 냅니다.