[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
docs.orbi.kr/docs/10913/" rel="noopener noreferrer" target="_blank">"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
똥통고배틀) 0
• 모의고사볼때 마우스딸깍질하다가 코고는 선생 • 수업시간에 쌤 앞에서 성매수썰푸는...
-
둘이 공통점이 이미 천주교랑 불교라는 오리지널이 있는데 차이점은 자기 꼴리는대로...
-
기출1911가 난이도 3.5 1급 20번 / 약수 21번 치한 30번 5번 지수...
-
이거라도해야좀알찰듯
-
차영진쌤 들어보신 분! 독재 쌤이 억지로 듣게 시켜요 도와주세요 2
제가 다니는 독재 쌤이 자꾸 현우진쌤 커리 대신에 차영진쌤 들으라 하십니다.. 살짝...
-
나에게도 로맨스 0
스캠이 오네
-
1차도 조기발표 안해서 뭔가 뭔가
-
도대체 0
잔계산은 어카면 늘지..
-
흠
-
이때는 합격자 발표가 자동 ARS 전화로 갔네요 매우 흥미롭
-
프로그램 실행하고 PDF 파일 입력하고 종류만 선택하면 바로 PDF에서 문제 구역...
-
군대 0
님들아 신입생인데 군대 5월 말에 들어가도 바로 휴학 때릴 수 있음? 그냥 등록만...
-
할게없네 4
놀거다놀앗음
-
난 안될 것 같다
-
이게 젤 좋은듯 하체 등 가슴 어께 팔
-
으에에
-
앙기모띠
-
강기분 올해로 3번짼데 해설지보다 강의밀도가 더 높고 해설지에는 없는얘기도 꽤...
-
나도 더 열심히 할텐께
-
동국대 새터 1
아직 일정 안나온거죠? 에타에 찾아봐도 단과대 인스타나 단톡방 확인하라는데 아무것도 없어서..
-
난 약대 가면 11
약사될 듯 아닌가
-
한국외대 합격생을 위한 노크선배 꿀팁 [외대25] [글캠 주변 맛집] 0
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는 예비 한국외대학생,...
-
2분할 4
가슴 등 이두 삼두
-
다행이네
-
오늘 하체네 11
씨발!
-
공부는 인생의 부분집합이여서 그런가. . .
-
얼버기 3
반갑습니다
-
여고딩vs여대생 4
누가 더 좋음?(맞짱)
-
진짜 모름 사이비 재단에 돈바치는 데에 거리낌이 없는건가 그 돈으로 또 사회적으로,...
-
박정희vs 노무현
-
어디가 더 냄새날까
-
ㅈ같넹..
-
이젠 진짜 해야지
-
1. 중국 증시 폭등 2. 자율주행 차 타고 감. 근데 내가 보냇 위에 매달려서...
-
서울대 교차지원 2
서울대는 교차지원 아예 안되는건가요?
-
이거 가능함?
-
ㅇㅇ
-
체력은 쿠팡일해보니 여자보다 못함 난 왜태어난거냐
-
야설 시킨거 왔다 13
생명과학2 교재 왔음
-
월천 벌고싶다 0
환생해야할듯
-
게이인거임 여자인거임?
-
진짜 모르겠네 어케하지
-
아 ㄹㅇ개졸리다 0
지금 자면 진짜 밤낮 못바꿀거같은데 그냥잘까
-
조금 쉬어야지 0
으헤헤
-
지인선n제 해강 보는데, 지인선님 뷔 닮으셨음
-
진짜 안되겠다 인생
-
피씨방 옴.... 10
게임하러 오는건 진짜 오랜만이네
-
서강대 합격생을 위한 꿀팁 11 [서강대 25][Tip.11] 0
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
나는 고1때까지 3
월에 1000만원 버는게 목표라고 했었음 그냥 다들 웃고넘어가긴 했음
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!