강사 중 제대로 푸는 것을 본적이 없는 문제
[5탄 문제는 어떻게 읽어야 하는가?]
아직도 이 문제를 제대로 푸는 사람, 강사, 인강을 본 적이 없습니다. (있다면 제보 부탁드립니다)
이 문제를 제대로 풀지 못 하는 이유는 아마 문제의 구조를 잘 모르기 때문이라고 생각합니다.
거의 모든 해설은 박스 밑에 있는 조건으로 먼저 식을 처리하고, 좌표평면에 y=x, y=-x 그래프를 그리고 케이스분류(?) 같은 것을 하며 그래프를 그리다가, 삼차함수를 잘 갖다가 접하게 붙여, (운이 좋으면) 빠르게 개형을 찾아 풀이합니다. 잘 되던가요?
이것이 과연 평가원이 의도한 풀이일까요?
박스 밑에 있는 조건은 식을 간단히 하기 위한 조건으로 준것일까요? 그런 것을 평가하려고 하는 기관일까요? 심지어 박스 위도 아니고 아래에 줬는데?
문제로 학생들의 능력을 어떻게 평가할까 고민 하는 것을 직업으로 가지고 있는 연구원들과 그 기관인데... 너무 하지 않나요?
(1) 문제 잘 읽기
우선 이 문제는 최고차항이 양수인 삼차삼수가 (가),(나)의 조건을 만족시킵니다. 그리고 f(0)=0과 f'(1)=1일 때, f(3)을 구하라는 묻는 것이 있습니다.
(1-2) 문제 잘 못 읽기
(가) 조건에서는 f(x)-x=0이 두 근을 갖습니다. 그리고 (나)조건을 봐야겠죠? 아마 여기서 거의 대부분 문제를 잘 못 읽습니다. 가, 나 조건을 함께 봐야 한다면 문제 형식은 저런식으로 주지 않았을 겁니다.
대부분은 문제를 이렇게 함부로 고쳐서 읽는 것 같습니다,
사실 심지어 이렇게 읽은 풀이도 많습니다.
알아서 복잡하게 만들고 있다... 이런 느낌입니다.
(2) 조건 해석하기
(가) 조건에서는 f(x)-x=0이 두 근을 갖습니다. 그리고 나서 (나)조건을 보겠습니다.
(가) 조건에서 우리는 f(x)-x가 두 근을 갖는다고 보았을때 식을 만들 었을 것이고 그 다음 (나) 조건을 봐야합니다. 그렇다면 f(x)-x=g(x)라고 만들었으니, (나)식은 g(x)=-2x 의 근이 두 개라는 말이 됩니다.
(3) 추론 연산하기
이제 g(x)와 -2x와의 위치관계를 보면 됩니다. 그렇다면 밑에 있는 조건이 왜 f(0)=0이고 f'(1)=1이라고 주었는지 알 수 있을 겁니다.
이해가 되시나요?
f(0)=0 ----> g(0)=0
f'(1)=1 ----> g'(0)=0
그래프가 한 번에 찾아 지시나요?
물론 이 문제는 가르치는 사람의 입장에서 열심히 분석해야하는 문제입니다. 수험생 분들이 이런 평가원의 의도를 찾으려 한다면 언제나 방향성을 잡아줄 선생님이 필요할 겁니다. 평가원 기출 문제는 엄청난 보물입니다. 이런 문제가 30년치가 쌓여있는데... 문제를 풀이하고 단순 소비하는 형태로 지나치지 않았으면 합니다.
수험생 여러분 항상 응원합니다.
1탄 [글의 시작 - 묻는 것에 따라 어떻게 계획하고 행동을 할 것인가 생각하자]
2탄 [해설지가 뭐 이래...? 해설이 아니라 계산지 아닌가....? (feat. 수능 13번)]
3탄 [수능 5번, 맞힌 문제로 공부하기]
4탄 [추측과 정당화, 수능 12번 (부모의 마음을 가진 평가원)]
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
연세대 기균 0
질문 있는데 쪽지 주실 분 있나요
-
n축 특) 알기 전에도 이미 똑같은 걸 쓰고 있었음 3
그래서 미적 합성함수 문제들도 그냥 원래 하던 대로 풀음 ㅋㅋ
-
한 번 더 기기ㅜㅠㅠ
-
미스테리의 친구임 초등학교때 칼부림소동 일으켰어서 왕따..?당한다는데 가끔 말을...
-
1. 연세대 의예과 2. 서울시립대 국사학과 3. 인하대 국어국문학과 4. 마산대...
-
확통 공부하실건가요? 그러고보니까 내신때 안했으면 공부 해야겠네 강사들 ㅈㄴ...
-
만년 완전높2 엿는데 실모연습하니까 깨지더라
-
이떼 엉덩이의 크기는? (단 엉덩이는 자연수이다.)
-
그저 대...
-
장점도 잇고 부작용도 잇는 듯.다만 일반적으로 장점이 훨 큰거 같음.
-
궁금함
-
걍 그렇다고
-
어디가심
-
그냥 갈 거 그랬나ㅠㅠ 일단 너무 끝자락으로 붙어서 면접 봐도 될 확률이 거의...
-
강의들어가니깐 서버 ip주소를 찾을수없다는데
-
자료 올라오는거봐라 ㅉㅉ
-
배달 아조씨가 음식 받았는데 내가 현관 안 열어주면 못 들어오심
-
될거같아서 열신히 운동해야겠다…
-
수리과학부 가면 10
뭘 수리하나요
-
설수의 0
설수의 올해 컷대충어느정돈가요? 짐학사에서 지원안한곳 점공 볼수있나요?...
-
“수시” 17
수학 2컷 걸리고 의대가는 애들 진짜 많네... 이게맞나...
-
자료 안 올리냐? 이기적이네
-
학군지에서 N수 4
생각보다 많지않나요?? 학군지라 학교 50퍼 넘게 재수는 필수고 거의 다 반수는...
-
독서 난이도 대결 17
가능세계 vs 헤겔 오버슈팅 vs 브레턴우즈 우주론 vs 카메라 에이어vs아 비아...
-
N이 한자리면 큰 문제 없음 N이 두자리 넘어가도 괜찮규
-
저는 돈 행복 건강 시간 사랑은 양심적으로 뺄게요
-
쪽지 개수 ㅇㅈ 8
왜클릭
-
누가봐도 이쪽이 형이고 이쪽이 동생아님?
-
3모 90 5모 99 6모 85 7모 99 9모 95 10모 97 수능 98
-
모범생까진 아닌거 같기도 하고,,
-
나이도 많은데 솔직히 같은 학번이어도 대하기 부담스러움;; 진짜 애기들 노는 자리에...
-
공부 주파수나 지브리 음악 들으면서 시작하는거 ㄱㅊ?
-
나 그냥 과외 15
4.5 로 올릴게 이러면 ㄹㅇ 빌런들 안꼬이겠지 ㅠㅠ
-
가이시마스
-
단층이 생기면 지층이 어긋나잖아요, 그럼 지층 높이가 달라지는데 왜 문제들을 보면...
-
물1 n제추천좀 3
배기범, 강민웅 제외
-
투표좀부탁드림다 3
https://orbi.kr/00071389585/%EB%AF%B8%ED%95%84-...
-
연세대 모든 과 (미래캠 제외) 중 하나 진학하게 되는 랜덤박스임 메디컬 포함 모든...
-
01 02 03 04 05 06 07 이중에 누가 젤 근본있고 멋있는 세대임?
-
겜남술녀 0
네.
-
자작문제 해설 4
(0,0)이랑 (1,f(1))을 이은 직선의 기울기가 f(1)이란점에서 아이디어를...
-
3또는4? 1또는2?
-
커뮤나 현생이나 이왜틀? 라는 분들 비중이 제일높음,
-
수능을 보러가기엔 암 투 섹시
-
헬스터디를 강기원식 공부법으로 가르쳤음 2떴지
-
ㅇㅇ
-
반수냐 재수냐 3
현역 수능 33334 받음 목표는 경희대 이상 지금부터 수학 지구 공부 시작하고...
-
쌩쌩이 50개정도하고 10분도안돼서 존 나 쳐 힘 들 어 서 바로 집으로 튀엇음...
팔로우 박습니다
감사합니다.
아마 강윤구 강사라면 저렇게 풀듯요. 방정식을 풀 때 고정곡선 = 직선/상수로 고치는걸 강조하는 사람이라 f-x를 고정곡선르로 두고 0과 -2x를 직선상수로 두지 않을까? 싶네요
근데 푸는 영상은 모르겠습니다 ㅈㅅㅎㅎ
고정 곡선과 직선 두개로 다들 풀더라고요. 아마 평가원 기출이니 대부분의 선생님들 책에 해설이 있을 것입니다. 한번 확인 해보겠습니다. 감사합니다. 혹시 확인을 해주신다면... 사례하겠습니다.
호
재밌어 보이길래 풀어봤습니다 ㅋㅋㅋㅋㅋ
해설 강의 찾아보시면 더 재밌을 겁니다
정병호