미적분 자작문제 하나!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고려대 환경공 vs 한양대 기공 어디감
-
엄마아빠한테도 지금이라도 치대가라고 권류해드렸음 진짜 의사 개망했네
-
ㅋㅋㅋㅋㅋㅋ
-
성대가 서성한 중에서 압도적인 원탑 가능하다고 봄?? 1
진짜 입결에 미쳤던데 서한 누르고 연고 노릴 수 있다고 봄??
-
출제 범위니 머니 걍 아무생각없고 내고싶은거 내는거같음
-
여자가 여자 아이돌을 좋아하는 경우는 있다. 하지만 남자가 남자 아이돌을 좋아하는...
-
6개월은 펑펑 놀되 기숙학원을 가세요.. 휴가는 꼬박꼬박 꼭 나가시고
-
아주 불가능하지도 않지 않나
-
근데 나보다 23센치 큼뇨
-
근데 여자옷임뇨
-
미컴넣었는데 경쟁률이 290:1이라.. 잘쓰긴했는데 다른분들도 쉬웠다는 평이...
-
라떼는 원서 2장이었는데
-
고려대 자연계열 과탐 가산 3% 연세대 자연계열 과탐 가산 3% 인문계열 사탐 가산...
-
전 지금처럼 귀엽고 뽀쨕한 물리1이 사랑스러워요
-
생명과학 1컷 44 가능할까요? 부산청이랑 대성 이투스만 44고 나머지는 거의...
-
인생 망햇뇨
-
변환할 때 표점으로 변환하는건가?아님 백분위?
-
완전 노베이스여서 초등 중등 고등 이렇게 외울려는데 어떤책을 사야할까요?
-
오늘은 지수함수와 로그함수의 도함수
-
교회갈때도 그거 신고다니는데 나는 그게 멋진줄 암
-
쎈 풀어야하나요 6
수학 확통 수능 기준 백분위 80 초중반 나오는데 쎈 b,c 풀어야하나요 수학...
-
편법 적폐전형으로 서울대 기어가놓고ㅋㅋ
-
머지다노
-
이번에 풀만한건가요... ㅠㅠ 1-2에 두번째꺼랑 2-3 못풀었는데 붙을확률 거의...
-
이 신발 신어본사람 11
ㅁㅌㅊ임? 신고벗기 편한지랑 내구도 어떤지 궁금
-
루비도 아쿠아 따라가는 엔딩
-
1등급 혹은 그 이상: 얘네는 사실 아쉬울 게 없음. 그냥 허접들 대가리 깨면서...
-
스펙 평가좀 14
원세대 공대 키 140 몸무게 30 모솔 미필 6수함
-
이번엔진짜다름..
-
한양대 화학과 0
컷 어느정도 할까요.. 1-3이랑 2-3빼고 다 맞은고 같고 저거 두개도...
-
그냥 붕신임ㄴ뇨
-
수학. . .
-
네이버 블로그/티스토리/뉴스기사 사진 등 브라우저 설정>사이트 및...
-
경북대 논술 0
신소재 썼는데 문제 어렵지 않았음? 1풀고 2보는데 뭐라는지 몰라서 과학 봤는데...
-
인생 망했음뇨
-
옷 뭐사지 3
흠흠
-
공부해야지 12
jlpt 개고수가 될거에요
-
뇌 빼고 침대에 누워서 쭈쭈바 먹고 싶어요 아무 생각 안하기 좋은 행동임
-
제발 합격시켜주세요 ㅠ
-
죄송합니다 4
수능판떠난지 한참 지난 한 늙은이가 화를 못참고 나댓나봅니다. 동생 입시정보볼려고...
-
안그래도 학령인구 줄어들어서 대학들 다 문닫게 생겼는데 최소한 대학입장에서도...
-
중논 상경인데 이번에 수능이 안어려웠다보니 잘봐서 안온사람+못봐서 안온사람...
-
gpa 최소 0.2는 높았다 ㄹㅇ
-
내 롤모델임뇨
-
기만 하고 싶다 2
근데 기만할게 없어
-
8학군 빡센 일반 남고인데 1-1 3.7 1-2 3.6 2-1 3.7 2-2...
-
수능 하루만을 보고 공부했던 3년이 드디어 끝났네요 수시를 챙기지 않은것은 아니지만...
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요